Problem 1845. Pascal's pyramid

  • Created by Tim

In Pascal's triangle each number is the sum of the two nearest numbers in the line above:

           1
         1   1
       1   2   1
     1   3   3   1
   1   4   6   4   1

A three-dimensional analog of Pascal's triangle can be defined as a square pyramid in which each number is the sum of the four nearest numbers in the layer above. Define a function pascalp(n) that returns the nth layer of this pyramid, as follows:

   pascalp(1)
      1
   pascalp(2)
      1  1
      1  1
   pascalp(3)
      1  2  1
      2  4  2
      1  2  1
   pascalp(4)
      1  3  3  1
      3  9  9  3
      3  9  9  3
      1  3  3  1
   pascalp(5)
      1  4  6  4 1
      4 16 24 16 4
      6 24 36 24 6
      4 16 24 16 4
      1  4  6  4 1

Note: Pascal's pyramid can also be defined as a tetrahedron (see http://en.wikipedia.org/wiki/Pascal%27s_pyramid), in which case the layers are triangular rather than square, and the numbers are the trinomial coefficients.

Solution Stats

63.64% Correct | 36.36% Incorrect
Last Solution submitted on Nov 08, 2024

Problem Comments

Solution Comments

Show comments


Problem Recent Solvers105

Problem Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!