VectorizedCodeEllip​ticParabolicPHFEM

These programs are supplements to the paper " Vectorized implementation of primal hybrid FEM in MATLAB" by N. Harish et al.
29 Downloads
Updated 23 Aug 2024

View License

Main_PH.m solves the second order elliptic equation with A=I, p=(1,1) and delta=1:
-nabla.(A nabla u + up)+ delta u = f in (0,1)^2
u=uD on the Dirichlet boundary
(A nabla u + up).n = g on the Neumann boundary.
ParabolicMain.m solves the second order parabolic problem with A=I, p=(1,1) and delta=1:
d/dt u - div(A nabla u+up)+ delta u = f in (0,1)^2,
u = u_D on the Dirichlet boundary
(A nabla u+up).n= g on the Neumann boundary
u0=0 Initial condition

Cite As

Sanjib Acharya (2024). VectorizedCodeEllipticParabolicPHFEM (https://www.mathworks.com/matlabcentral/fileexchange/136359-vectorizedcodeellipticparabolicphfem), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2023b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

VectorizedCodeEllipticParabolicPHFEM/VectorizedCodeEllipticParabolicPHFEM/VectorizedPHFEMCode/Edge_Redrefine_StiffMassConvPH_LambdaPH_vectorization

VectorizedCodeEllipticParabolicPHFEM/VectorizedCodeEllipticParabolicPHFEM/VectorizedPHFEMCode/Mixed_PrimalHybrid(Elliptic)_vectorization-Diff-Conv-React

VectorizedCodeEllipticParabolicPHFEM/VectorizedCodeEllipticParabolicPHFEM/VectorizedPHFEMCode/Mixed_PrimalHybrid(Parabolic)_vectorization-Diff-Conv-React

VectorizedCodeEllipticParabolicPHFEM/VectorizedCodeEllipticParabolicPHFEM/VectorizedPHFEMCode/Mixed_PrimalHybrid(Parabolic)_vectorization-Diff-Conv-React/codes from JV

Version Published Release Notes
7.0.0

Updated codes

6.0.0

Backward Euler Scheme Incorporated for parabolic case

5.0.0

Installation information added in Readme

4.0.0

More efficient

3.0.0

Typos corrected, image changed

2.0.0

Previous version contains some typos

1.0.0