3D convolutional auto encoder

2 views (last 30 days)
Juuso Korhonen
Juuso Korhonen on 29 Mar 2021
I try to define a 3D convolutional auto encoder, but when trying to train my training error just stays the same. Here is my structure:
layers = [
image3dInputLayer([120 160 120 1], 'Name', 'Input', 'Normalization',"none") %??
convolution3dLayer([3 3 3], 10, 'Name', 'conv1', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu1')
maxPooling3dLayer([2 2 2], "Stride", [2 2 2], "Name", 'max1')
convolution3dLayer([3 3 3], 10, 'Name', 'conv2', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu2')
maxPooling3dLayer([2 2 2], "Stride", [2 2 2], "Name", 'max2')
convolution3dLayer([3 3 3], 10, 'Name', 'conv3', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu3')
maxPooling3dLayer([2 2 2], "Stride", [2 2 2], "Name", 'max3')
dropoutLayer(0.5, "Name", 'drop')
convolution3dLayer([3 3 3], 10, 'Name', 'conv4', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu4')
resize3dLayer("OutputSize",[30 40 30], 'Method', "nearest", 'Name','up1')
convolution3dLayer([3 3 3], 10, 'Name', 'conv5', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu5')
resize3dLayer("OutputSize",[60 80 60], 'Method',"nearest", 'Name','up2')
convolution3dLayer([3 3 3], 10, 'Name', 'conv6', "Padding", "same", 'Stride', [1 1 1])
reluLayer('Name', 'relu6')
convolution3dLayer([1 1 1], 1, 'Name', 'concatenation', "Padding", "same", 'Stride', [1 1 1])
resize3dLayer("OutputSize",[120 160 120], 'Method', "nearest", 'Name','up31') %??
sigmoidLayer('Name', 'sigmoid') %??
regressionLayer('Name', 'reglayer')
];
lgraph = layerGraph(layers);
Especially I would like to know if the combining of the final feature maps is done correctly with the last convolution3dLayer, since I couldn't find a suitable layer for it in 3D. Also, if the use of sigmoid before the output is suitable? If I use normal reluLayer, the training error just goes to Inf.
I do the training the following way:
imdsTrain = transform(imdsTrain, @resize2AE,'IncludeInfo',true);
[net, info] = trainNetwork(imdsTrain, lgraph, options);
% Where the resize2AE function is
function [dataOut,info] = resize2AE(data,info)
numRows = size(data,1);
dataOut = cell(numRows,2);
% since ReadSize is expected to be >1, data comes in cell form containing
% multiple images
for idx = 1:numRows
% get the image out of the datacell
D = data{idx,1};
D = single(D);
D = imresize3(D, [120, 160, 120]);
D = normalize(D, 'range'); % normalize to [0,1] range
dataOut(idx,:) = {D,D}; % This is supposed to work for AE!!!!!!!
end
end
Can you spot some errors?

Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!