Ringe Kutta 4 Global Truncation error
5 views (last 30 days)
Show older comments
Hi there,
In order to calculate the global truncation error of the Ringe Kutta 4, i calculated y1 and y2 with a dx and y1 and y2 with 2*dx. Then i can subtract them from eachother and devide by (2^p)-1, where p = 4 (because of the Ringe Kutta). The model is a predator prey model.
However the error that i got is to big, can someone help me?
% parameter
a = 3;
c = 3;
alpha = 2*10^(-3);
gamma = 7*10^(-3);
%% k = 0
k = 0
delta_t0 = 0.5/(2^k);
%initial conditions
y10(1)=600;
y20(1)=1000;
t0(1)=0;
t0 = ti:delta_t0:tf;
h0 = delta_t0;
N0 = ceil(tf/h0);
% define the seasonal fishing load factor
W0 = zeros(11,1);
for n =1:N0
W0(n,1)=fishing_load_factor(t0(n));
end
% Define functions
fy1 = @(t,y1,y2,W0) (a-alpha*y2)*y1-W0*y1;
fy2 = @(t,y1,y2) (-c+gamma*y1)*y2;
% Update loop
for i = 1:N0
%Update time
t0(1+i)=t0(i)+h0;
% Update y1 and y2
K11 = fy1(t0(i) ,y1(i) , y2(i), fishing_load_factor(t0(i)));
K12 = fy2(t0(i) ,y1(i) , y2(i));
K21 = fy1(t0(i)+h0/2 ,y1(i)+h0/2*K11, y2(i)+h0/2*K12, fishing_load_factor(t0(i)+h0/2));
K22 = fy2(t0(i)+h0/2 ,y1(i)+h0/2*K11, y2(i)+h0/2*K12);
K31 = fy1(t0(i)+h0/2 ,y1(i)+h0/2*K21, y2(i)+h0/2*K22, fishing_load_factor(t0(i)+h0/2));
K32 = fy2(t0(i)+h0/2 ,y1(i)+h0/2*K21, y2(i)+h0/2*K22);
K41 = fy1(t0(i)+h0 ,y1(i)+h0*K31 , y2(i)+h0*K32, fishing_load_factor(t0(i)+h0));
K42 = fy2(t0(i)+h0 ,y1(i)+h0*K31 , y2(i)+h0*K32);
y10(1+i) = y1(i)+h0/6*(K11 + 2*K21 + 2*K31 + K41);
y20(1+i) = y2(i)+h0/6*(K12 + 2*K22 + 2*K32 + K42);
end
delta_t0f = delta_t0*2;
%initial conditions
y10f(1)=600;
y20f(1)=1000;
t0f(1)=0;
t0f = ti:delta_t0f:tf;
h0f = delta_t0f;
N0f = ceil(tf/h0f);
% define the seasonal fishing load factor
W0f = zeros(N0f,1);
for n =1:N0f
W0f(n,1)=fishing_load_factor(t0f(n));
end
% Define functions
fy1 = @(t,y1,y2,W0f) (a-alpha*y2)*y1-W0f*y1;
fy2 = @(t,y1,y2) (-c+gamma*y1)*y2;
% Update loop
for i = 1:N0f
%Update time
t0f(1+i)=t0f(i)+h0f;
% Update y1 and y2
K11 = fy1(t0f(i) ,y1(i) , y2(i), fishing_load_factor(t0f(i)));
K12 = fy2(t0f(i) ,y1(i) , y2(i));
K21 = fy1(t0f(i)+h0f/2 ,y1(i)+h0f/2*K11, y2(i)+h0f/2*K12, fishing_load_factor(t0f(i)+h0f/2));
K22 = fy2(t0f(i)+h0f/2 ,y1(i)+h0f/2*K11, y2(i)+h0f/2*K12);
K31 = fy1(t0f(i)+h0f/2 ,y1(i)+h0f/2*K21, y2(i)+h0f/2*K22, fishing_load_factor(t0f(i)+h0f/2));
K32 = fy2(t0f(i)+h0f/2 ,y1(i)+h0f/2*K21, y2(i)+h0f/2*K22);
K41 = fy1(t0f(i)+h0f ,y1(i)+h0f*K31 , y2(i)+h0f*K32, fishing_load_factor(t0f(i)+h0f));
K42 = fy2(t0f(i)+h0f ,y1(i)+h0f*K31 , y2(i)+h0f*K32);
y10f(1+i) = y1(i)+h0f/6*(K11 + 2*K21 + 2*K31 + K41);
y20f(1+i) = y2(i)+h0f/6*(K12 + 2*K22 + 2*K32 + K42);
end
% calculating errors
p = 4;
error01 = abs((y10(3)-y10f(2))/((2^p)-1))
error02 = abs((y20(3)-y20f(2))/((2^p)-1))
2 Comments
James Tursa
on 8 Jan 2020
As I stated in your other post, your h values are way too big to get meaningful results.
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!