Error using Cos, not enough input arguments

3 views (last 30 days)
Hello, I'm having a problem with the cosine and sine functions in MatLab. I'm trying to replicate the effect of a plasma actuator in matlab which involves adding a source term that replicates the effect. The source term involve a Guassian function;
a = (cos^2*(pi/2)/2*Ox^2) + (sin^2*(pi/2)/2*Oy^2);
b = (-(sin*2*(pi/2)/4*Ox^2 + (sin*2*(pi/2)/4*Oy^2)));
c = (sin^2*(pi/2)/2*Ox^2) + (cos^2*(pi/2)/2*Oy^2);
with the source term being;
Su = A*exp(-(a(x-xc)^2 + 2*b(x-xc)*(y-yc) + x(y-yc)^2));
when i try running, it says error using cos, not enough input arguments. Does anyone know where im going wrong?
Thanks

Accepted Answer

Stephen23
Stephen23 on 5 Apr 2019
Edited: Stephen23 on 5 Apr 2019
cos^2*(pi/2) % incorrect
cos(pi/2)^2 % correct
Your code has several other syntax errors, such as:
Ox % what does this mean?
Oy % what does this mean?
and
b(...) % if this is supposed to be multiplication, then you actually need:
b*(...)
You should learn basic MATLAB concepts by doing the introdcutory tutorials:
and also reading the documentation for every operation that you use, no matter how trivial you think it might be. You should also learn about vectorized code:
  2 Comments
Ned Sara
Ned Sara on 5 Apr 2019
Edited: Stephen23 on 5 Apr 2019
Ox and Oy were reffering to sigma x and sigma y in the Guassian Function
clear; close all;
nx=101; ny=101; nt=500; nit=50;
xmin=-5; xmax=5;
ymin=0; ymax=8;
dx = (xmax-xmin)/(nx-1);
dy = (ymax-ymin)/(ny-1);
x = linspace(xmin,xmax,nx);
y = linspace(ymin,ymax,ny);
[X,Y] = meshgrid(x,y);
rho=1.225;
nu=0.000001;
dt=0.0000001;
source_posx = -2;
source_posy = 0;
source_h = 1;
source_w = 1.5;
A=0.5;
sigma_x = 0.5;
sigma_y = 0.5;
x = 2;
xc = 0.2;
y = 2;
yc = 0.2;
a = ((cos(pi/2)^2)/2*sigma_x^2) + ((sin(pi/2)^2)/2*sigma_y^2);
b = (-(sin*2*(pi/2)/4*sigma_x^2) + (sin*2*(pi/2)/4*sigma_y^2));
c = (sin(pi/2)^2)/(2*sigma_x^2) + (cos(pi/2)^2)/2*sigma_y^2;
% Source term
Su = A*exp(-(a*(x-xc)^2 + 2*b*(x-xc)*(y-yc) + c*(y-yc)^2));
Sv = 0.1;
% Init
u=zeros(ny,nx);
v=zeros(ny,nx);
p=zeros(ny,nx);
b=zeros(ny,nx);
%Pressure Field
%Square Brackets of Poissons Equation
for it = 1:nt+1
for i=2:(nx-1)
for j=2:(ny-1)
b(i,j)=rho*(1/dt*((u(i+1,j)-u(i-1,j))/(2*dx)+(v(i,j+1)-v(i,j-1))/(2*dy))-((u(i+1,j)-u(i-1,j))/(2*dx))^2-2*((u(i,j+1)-u(i,j-1))/(2*dy)*(v(i+1,j)-v(i-1,j))/(2*dx))-((v(i,j+1)-v(i,j-1))/(2*dy))^2);
end
end
for iit=1:nit+1
pn=p;
for i=2:(nx-1)
for j=2:(ny-1)
p(i,j)=((pn(i+1,j)+pn(i-1,j))*dy^2+(pn(i,j+1)+pn(i,j-1))*dx^2)/(2*(dx^2+dy^2))-dx^2*dy^2/(2*(dx^2+dy^2))*b(i,j);
end
end
p(:,ny) = p(:,ny-1); %%dp/dy = 0 at y = 2
p(1,:) = p(2,:); %%dp/dy = 0 at y = 0
p(:,1) = p(:,2); %%dp/dx = 0 at x = 0
p(:,ny) = 0; %%dp = 0 at y = 2
end
un = u;
vn = v;
for j=2:nx-1
for i=2:ny-1
%Velocity Field
% U components:
u1 = un(i,j)*dt/dx*(un(i,j)-un(i-1,j));
v1 = vn(i,j)*dt/dy*(un(i,j)-un(i,j-1));
px = dt/(2*rho*dx)*(p(i+1,j)-p(i-1,j));
ux = dt/dx^2*(un(i+1,j)-2*un(i,j)+un(i-1,j));
uy = dt/dy^2*(un(i,j+1)-2*un(i,j)+un(i,j-1));
% V components:
u2 = un(i,j)*dt/dx*(vn(i,j)-vn(i-1,j));
v2 = vn(i,j)*dt/dy*(vn(i,j)-vn(i,j-1));
py = dt/(2*rho*dy)*(p(i,j+1)-p(i,j-1));
vx = dt/dx^2*(vn(i+1,j)-2*vn(i,j)+vn(i-1,j));
vy = dt/dy^2*(vn(i,j+1)-2*vn(i,j)+vn(i,j-1));
inxrng = (X(i,j) >= source_posx-(0.5*source_w)) && (X(i,j) <= source_posx+(0.5*source_w));
inyrng = (Y(i,j) >= source_posy-(0.5*source_h)) && (Y(i,j) <= source_posy+(0.5*source_h));
u(i,j) = un(i,j)-u1-v1-px+nu*(ux + uy);
v(i,j) = vn(i,j)-u2-v2-py+nu*(vx + vy);
% Add source term
if inxrng && inyrng
u(i,j) = u(i,j) + Su;
v(i,j) = v(i,j) + Sv;
end
end
u(1,:)=0;
u(:,1)=0;
u(nx,:)=0;
u(:,ny)=0;
v(1,:)=0;
v(ny,:)=0;
v(:,1)=0;
v(nx,:)=0;
end
%surf(x,y,u)
% %contourf(x,y,sqrt(u.^2+v.^2),'linestyle','None')
% quiver(x,y,u,v,5)
% axis equal
% pause(0.05)
%surf(x,y,u)
%pause(0.001)
end
quiver(x,y,u,v,5)
axis equal
pause(0.05)
That is the full code if it makes sense
Stephen23
Stephen23 on 5 Apr 2019
Learn how to write vectorized code.

Sign in to comment.

More Answers (0)

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!