How to integrate a function from abs(x) to inf and then from -inf to inf
2 views (last 30 days)
Show older comments
I'm a beginner with Matlab, and I'm trying to solve the following problem
f(x) = \int_{abs(x)}^{\infty} 10^-15 *(u+x)^24 *(u-x)^19 *exp(-(u+x)/0.4 - (u-x)/0.2) du
h(x) = exp(-(x-3)^2)
g = int_{-\infty}^{\infty} abs(f(x)-h(x))*f(x) dx.
h = @(x) exp(-(x-3).^2)
ff =10.^(-15).*(u+x).^24.*(u-x).^19.*exp(-(u+x)./(0.4)-(u-x)./(0.2))
f = @(x) int(ff,[abs(x),Inf])
g= int(abs(hV(x) - hN(x)).*hV(x), -inf, inf)
I tried int() with symbolic but it takes too long. I waited for so long but I didn't get the answer.
Anyone please helps me? Any help is really appreciated.
0 Comments
Accepted Answer
Walter Roberson
on 11 Jun 2017
If you have a new enough MATLAB version, I recommend using vpaintegral() for g. You will not be able to get a closed-form expression for the solution. The expression abs(f(x)-h(x))*f(x) can be resolved to a (moderately long) closed form, but not the integral of it:
Q = @sym;
vpaintegral((Q('39815708579071000576')/Q('12373575009405612945556640625'))*exp(-(Q(15)/2)*abs(x)+(Q(5)/2)*x)*abs((1/Q('75254345816500034516138839535415172576904296875'))*(Q('12460787176237432654850829097754574508051660800')*x+Q('364911707638202486530359951360000000000000000')*x^18+Q('10801782320033631899876327424000000000000000')*x^20+Q('242153548999443873792000000000000000000')*x^24+Q('7748913567982203961344000000000000000000')*x^23+Q('124757508444513483777638400000000000000000')*x^22+Q('1341836313047656136630599680000000000000000')*x^21+Q('1215982495947448897225498930434930848563200000000')*x^10+Q('69129780379957004576012579635200000000000000')*x^19+Q('2222566609516328614112172087206037052981248000000')*x^7+Q('2998303856195967613479585050257081014367027200000')*x^6+Q('1450119515412072306293791792163810046986158080000')*x^5+Q('1630847112211872638631845624348024902778880000000')*x^9+Q('1625430571490826341836884069580800000000000000')*x^17+Q('6228540677309384973761505342259200000000000000')*x^16+Q('20581138153841490558913456015147008000000000000')*x^15+Q('60217676965085082683869479532127846400000000000')*x^14+Q('150721651185694293397347184526386790400000000000')*x^13+Q('347514228856267477384178270354716753920000000000')*x^12+Q('651475079687021507321333823149029982208000000000')*x^11+Q('1770859125291983052314700035039995160759894016000')*x^4+Q('343539994884943156381558136710742406951075840000')*x^3+Q('2539907823085954755381175840790823472988160000000')*x^8+Q('397855133412723742622737186192592486078506598400')*x^2+Q('14288369295418922777562284032091912102565904384')+(Q('242153548999443873792000000000000000000')*x+Q('7748913567982203961344000000000000000000'))*abs(x)^23+(Q('124757508444513483777638400000000000000000')*x+Q('1341836313047656136630599680000000000000000'))*abs(x)^21+(Q('10801782320033631899876327424000000000000000')*x+Q('69133033316473483742404411392000000000000000'))*abs(x)^19+(Q('364808697981847312927951945728000000000000000')*x+Q('1627037522129967050034448957440000000000000000'))*abs(x)^17+(Q('6212149780790149750146343486095360000000000000')*x+Q('20703523514518446895239997874503680000000000000'))*abs(x)^15+(Q('59507841873158735933175536747859148800000000000')*x+Q('154034214948017244900585584186307379200000000000'))*abs(x)^13+(Q('334800293654208911138415650707592970240000000000')*x+Q('692159672333608919307774206019826089984000000000'))*abs(x)^11+(Q('1106586146831069411661959234271234647654400000000')*x+Q('1878812170208999472575868935652402958172160000000'))*abs(x)^9+(Q('2066519985091439890578949519209738094510080000000')*x+Q('2979987150307552397795734201735773658546176000000'))*abs(x)^7+(Q('1992294009709162690535776908394507779283353600000')*x+Q('2542358777312031936918497774757460987934146560000'))*abs(x)^5+(Q('824251764978684705773288183458831011938304000000')*x+Q('974611568427142054075832704431518506165469184000'))*abs(x)^3+(Q('93455903821780744911381218233159308810387456000')*x+Q('107162769715641920831717130240689340769244282880'))*abs(x))*exp(-(Q(15)/2)*abs(x)+(Q(5)/2)*x)-exp(-(x-3)^2))*((Q('4172821103674444526649344/81091461181640625'))*x+(Q('3051560512/2025'))*x^18+(Q('50183056')/1125)*x^20+x^24+32*x^23+(Q(2576)/5)*x^22+(Q(1246784)/225)*x^21+(Q('107247039185970331648/21357421875'))*x^10+(Q('4817460032/16875'))*x^19+(Q('4900639792485308039168/533935546875'))*x^7+(Q('297499440787296232669184/24027099609375'))*x^6+(Q('719422989798602637836288/120135498046875'))*x^5+(Q('239728675827463094272/35595703125'))*x^9+(Q('113271686528')/16875)*x^17+(Q('144683162624')/5625)*x^16+(Q('107568123959296')/1265625)*x^15+(Q('1573650225731584')/6328125)*x^14+(Q('3938763040436224')/6328125)*x^13+(Q('408666761175056384')/284765625)*x^12+(Q('3830579997805969408')/1423828125)*x^11+(Q('4392730229782723179839488')/Q('600677490234375'))*x^4+(Q('1533911590375100688367616')/Q('1081219482421875'))*x^3+(Q('124452446542008352768')/Q('11865234375'))*x^8+(Q('44410738889106588176482304/27030487060546875'))*x^2+(Q('4069799565323075584')/Q('1423828125')+(Q('393715538205237248')/284765625)*x)*abs(x)^11+(Q('2485607849368959451136')/Q('320361328125')+(Q('97598516629447049216')/Q('21357421875'))*x)*abs(x)^9+(Q('6570711333178065289216')/Q('533935546875')+(Q('911313076291480518656')/Q('106787109375'))*x)*abs(x)^7+(Q('1261296971232606490198016')/Q('120135498046875')+(Q('197680549470506049339392')/Q('24027099609375'))*x)*abs(x)^5+(Q('21758281469159603603243008')/Q('5406097412109375')+(Q('1817430794283294654464')/Q('533935546875'))*x)*abs(x)^3+(Q('179431307458001114645921792')/Q('405457305908203125')+(Q('2086410551837222263324672')/Q('5406097412109375'))*x)*abs(x)+(x+32)*abs(x)^23+(Q(1246784)/225+(Q(2576)/5)*x)*abs(x)^21+(Q('963537344')/3375+(Q('50183056')/1125)*x)*abs(x)^19+(Q('167975808')/25+(Q('1694832832')/1125)*x)*abs(x)^17+(Q('21641555167232')/253125+(Q('721512087296')/28125)*x)*abs(x)^15+(Q('1341776420368384')/2109375+(Q('1555100321302528')/6328125)*x)*abs(x)^13+Q('358862614916002229291843584')/Q('6081859588623046875')), x, -inf, inf)
3 Comments
Walter Roberson
on 12 Jun 2017
syms u x
f(x) = int(10^(-15) *(u+x)^24 *(u-x)^19 *exp(-(u+x)/0.4 - (u-x)/0.2),u,abs(x), inf)
h(x) = exp(-(x-3)^2)
gexpr = abs(f(x)-h(x))*f(x)
gfun = matlabFunction(gexpr)
g = integral(gfun, -inf, inf)
More Answers (0)
See Also
Categories
Find more on Number Theory in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!