TRI STATE MEDIAN FILTER

9 views (last 30 days)
finger boy
finger boy on 4 Mar 2012
I need MATLAB code of tri-state Median Filter. I researched about this subject and found following correspondence.
hello every one i am new to matlab and need to perform tri state median filtering for a salt and pepper noise image ...
Kindly tell me the matlab codes ...i am still working on median filtering ..and need fast guidance ..
thank you
See my code in this answer: http://www.mathworks.com/matlabcentral/answers/18504-how-to-remove-deadpixels-from-the-image
But, the following link doesn' t exist
  1 Comment
Image Analyst
Image Analyst on 4 Mar 2012
Huh? Then how are we supposed to see your code????

Sign in to comment.

Answers (1)

Image Analyst
Image Analyst on 4 Mar 2012
I don't know it by that name but I have posted code before, either here or in the newsgroup, where I fixed salt and pepper noise with the median values. Here it is again.
clc; % Clear command window.
clear; % Delete all variables.
close all; % Close all figure windows except those created by imtool.
imtool close all; % Close all figure windows created by imtool.
workspace; % Make sure the workspace panel is showing.
fontSize = 15;
% Read in a standard MATLAB color demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'peppers.png';
fullFileName = fullfile(folder, baseFileName);
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
rgbImage = imread(fullFileName);
% Get the dimensions of the image. numberOfColorBands should be = 3.
[rows columns numberOfColorBands] = size(rgbImage);
% Display the original color image.
subplot(3, 4, 1);
imshow(rgbImage);
title('Original color Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'Position', get(0,'Screensize'));
% Extract the individual red, green, and blue color channels.
redChannel = rgbImage(:, :, 1);
greenChannel = rgbImage(:, :, 2);
blueChannel = rgbImage(:, :, 3);
% Display the individual red, green, and blue color channels.
subplot(3, 4, 2);
imshow(redChannel);
title('Red Channel', 'FontSize', fontSize);
subplot(3, 4, 3);
imshow(greenChannel);
title('Green Channel', 'FontSize', fontSize);
subplot(3, 4, 4);
imshow(blueChannel);
title('Blue Channel', 'FontSize', fontSize);
% Generate a noisy image. This has salt and pepper noise independently on
% each color channel so the noise may be colored.
noisyRGB = imnoise(rgbImage,'salt & pepper', 0.05);
subplot(3, 4, 5);
imshow(noisyRGB);
title('Image with Salt and Pepper Noise', 'FontSize', fontSize);
% Extract the individual red, green, and blue color channels.
redChannel = noisyRGB(:, :, 1);
greenChannel = noisyRGB(:, :, 2);
blueChannel = noisyRGB(:, :, 3);
% Display the noisy channel images.
subplot(3, 4, 6);
imshow(redChannel);
title('Noisy Red Channel', 'FontSize', fontSize);
subplot(3, 4, 7);
imshow(greenChannel);
title('Noisy Green Channel', 'FontSize', fontSize);
subplot(3, 4, 8);
imshow(blueChannel);
title('Noisy Blue Channel', 'FontSize', fontSize);
% Median Filter the channels:
redMF = medfilt2(redChannel, [3 3]);
greenMF = medfilt2(greenChannel, [3 3]);
blueMF = medfilt2(blueChannel, [3 3]);
% Find the noise in the red.
noiseImage = (redChannel == 0 | redChannel == 255);
% Get rid of the noise in the red by replacing with median.
noiseFreeRed = redChannel;
noiseFreeRed(noiseImage) = redMF(noiseImage);
% Find the noise in the green.
noiseImage = (greenChannel == 0 | greenChannel == 255);
% Get rid of the noise in the green by replacing with median.
noiseFreeGreen = greenChannel;
noiseFreeGreen(noiseImage) = greenMF(noiseImage);
% Find the noise in the blue.
noiseImage = (blueChannel == 0 | blueChannel == 255);
% Get rid of the noise in the blue by replacing with median.
noiseFreeBlue = blueChannel;
noiseFreeBlue(noiseImage) = blueMF(noiseImage);
% Reconstruct the noise free RGB image
rgbFixed = cat(3, noiseFreeRed, noiseFreeGreen, noiseFreeBlue);
subplot(3, 4, 9);
imshow(rgbFixed);
title('Restored Image', 'FontSize', fontSize);
  1 Comment
Elysi Cochin
Elysi Cochin on 6 Nov 2012
thank u so much sir... saved lot of my time..

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!