Why limit((1-(-1)^n)/n, n, 0) = -pi*1i ? limit((1-exp(-pi*n*1i))/n, n, 0) = pi*1i
limit((1-(-1i)^n)/n, n, 0) = limit((1-exp(-pi/2*n*1i))/n, n, 0) = (pi*1i)/2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
>> syms n theta
>> assume(n,"integer")
>> limit((1-(-1)^n)/n, n, 0)
ans =
-pi*1i
>> limit((1-exp(-pi*n*1i))/n, n, 0)
ans =
pi*1i
>> n_value = -10:10;
>> subs(exp(-pi*n*1i) - (-1).^n, n, n_value)
ans =
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>> limit((1-(-1i)^n)/n, n, 0)
ans =
(pi*1i)/2
>> limit((1-exp(-pi/2*n*1i))/n, n, 0)
ans =
(pi*1i)/2
>> subs(exp(-pi/2*n*1i) - (-1i).^n, n, n_value)
ans =
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>