Matrix dimensions must agree
2 views (last 30 days)
Show older comments
Error using -
Error in VEoTCclusters (line 34)
dist = norm(vehicles(i).position - clusters(j).center);
code
clear;
clc;
close all;
% Parameters
numVehicles = 50; % Number of vehicles
numEdges = 3; % Number of edge computing nodes
numClusters = 5; % Number of clusters in the Things layer
cloudCapacity = 1000; % Cloud computing capacity
edgeCapacity = [100, 150, 200]; % Edge computing capacity
taskRate = 0.1; % Task generation rate per vehicle (tasks/second)
communicationDelayEdge = 1;% Communication delay for edge offloading (seconds)
communicationDelayCloud = 5;% Communication delay for cloud offloading (seconds)
distanceThreshold = 100; % Maximum distance for edge offloading (meters)
clusterRadius = 200; % Radius for clustering in the Things layer (meters)
% Initialize vehicles
vehicles = struct('position', rand(numVehicles, 2)*1000, 'tasks', []);
% Initialize edge nodes
edges = struct('position', rand(numEdges, 2)*1000, 'tasks', [], 'capacity', edgeCapacity);
% Cloud initialization
cloud = struct('tasks', [], 'capacity', cloudCapacity);
% Initialize clusters in the Things layer
clusters = struct('center', rand(numClusters, 2)*1000, 'members', []);
% Form clusters in the Things layer
for i = 1:numVehicles
minDist = inf;
nearestCluster = 0;
for j = 1:numClusters
dist = norm(vehicles(i).position - clusters(j).center);
if dist < minDist
minDist = dist;
nearestCluster = j;
end
end
clusters(nearestCluster).members = [clusters(nearestCluster).members, i];
end
% Simulation loop
for t = 1:1000
% Generate tasks for vehicles
for i = 1:numVehicles
if rand < taskRate
vehicles(i).tasks = [vehicles(i).tasks; t];
end
end
% Offload tasks from vehicles to either edge nodes or cloud
for i = 1:numVehicles
% Determine if edge offloading is possible
edgeOffload = false;
for j = 1:numEdges
if norm(vehicles(i).position - edges(j).position) <= distanceThreshold && ~isempty(edges(j).tasks)
edgeOffload = true;
break;
end
end
% Offload task to edge node if possible, otherwise to cloud
if edgeOffload
for j = 1:numEdges
if norm(vehicles(i).position - edges(j).position) <= distanceThreshold && ~isempty(edges(j).tasks)
task = vehicles(i).tasks(1);
vehicles(i).tasks(1) = [];
edges(j).tasks = [edges(j).tasks; task];
disp(['Task from vehicle ', num2str(i), ' offloaded to edge ', num2str(j)]);
break;
end
end
else
if ~isempty(cloud.tasks)
task = vehicles(i).tasks(1);
vehicles(i).tasks(1) = [];
cloud.tasks = [cloud.tasks; task];
disp(['Task from vehicle ', num2str(i), ' offloaded to cloud']);
end
end
end
% Process tasks at edge nodes
for j = 1:numEdges
if ~isempty(edges(j).tasks)
completedTasks = edges(j).tasks(edges(j).tasks <= t - communicationDelayEdge);
edges(j).tasks = setdiff(edges(j).tasks, completedTasks);
disp(['Edge ', num2str(j), ' processed ', num2str(length(completedTasks)), ' tasks']);
end
end
% Process tasks at the cloud
if ~isempty(cloud.tasks)
completedTasks = cloud.tasks(cloud.tasks <= t - communicationDelayCloud);
cloud.tasks = setdiff(cloud.tasks, completedTasks);
disp(['Cloud processed ', num2str(length(completedTasks)), ' tasks']);
end
% Move vehicles
for i = 1:numVehicles
vehicles(i).position = vehicles(i).position + randn(1, 2)*5; % Random movement
end
end
0 Comments
Accepted Answer
Voss
on 15 Mar 2024
% Parameters
numVehicles = 50; % Number of vehicles
numEdges = 3; % Number of edge computing nodes
numClusters = 5; % Number of clusters in the Things layer
cloudCapacity = 1000; % Cloud computing capacity
edgeCapacity = [100, 150, 200]; % Edge computing capacity
taskRate = 0.1; % Task generation rate per vehicle (tasks/second)
communicationDelayEdge = 1;% Communication delay for edge offloading (seconds)
communicationDelayCloud = 5;% Communication delay for cloud offloading (seconds)
distanceThreshold = 100; % Maximum distance for edge offloading (meters)
clusterRadius = 200; % Radius for clustering in the Things layer (meters)
You are creating a scalar structure here:
% Initialize vehicles
vehicles = struct('position', rand(numVehicles, 2)*1000, 'tasks', [])
But subsequent code expects that to be non-scalar. (Same for edges and clusters, but not cloud.)
So create a non-scalar structure array instead:
% Initialize vehicles
vehicles = struct('position', num2cell(rand(numVehicles, 2)*1000, 2), 'tasks', [])
% check the first one:
vehicles(1)
Making those changes, the code runs.
clear;
clc;
close all;
% Parameters
numVehicles = 50; % Number of vehicles
numEdges = 3; % Number of edge computing nodes
numClusters = 5; % Number of clusters in the Things layer
cloudCapacity = 1000; % Cloud computing capacity
edgeCapacity = [100, 150, 200]; % Edge computing capacity
taskRate = 0.1; % Task generation rate per vehicle (tasks/second)
communicationDelayEdge = 1;% Communication delay for edge offloading (seconds)
communicationDelayCloud = 5;% Communication delay for cloud offloading (seconds)
distanceThreshold = 100; % Maximum distance for edge offloading (meters)
clusterRadius = 200; % Radius for clustering in the Things layer (meters)
% Initialize vehicles
vehicles = struct('position', num2cell(rand(numVehicles, 2)*1000, 2), 'tasks', []);
% Initialize edge nodes
edges = struct('position', num2cell(rand(numEdges, 2)*1000, 2), 'tasks', [], 'capacity', edgeCapacity);
% Cloud initialization
cloud = struct('tasks', [], 'capacity', cloudCapacity);
% Initialize clusters in the Things layer
clusters = struct('center', num2cell(rand(numClusters, 2)*1000, 2), 'members', []);
% Form clusters in the Things layer
for i = 1:numVehicles
minDist = inf;
nearestCluster = 0;
for j = 1:numClusters
dist = norm(vehicles(i).position - clusters(j).center);
if dist < minDist
minDist = dist;
nearestCluster = j;
end
end
clusters(nearestCluster).members = [clusters(nearestCluster).members, i];
end
% Simulation loop
for t = 1:1000
% Generate tasks for vehicles
for i = 1:numVehicles
if rand < taskRate
vehicles(i).tasks = [vehicles(i).tasks; t];
end
end
% Offload tasks from vehicles to either edge nodes or cloud
for i = 1:numVehicles
% Determine if edge offloading is possible
edgeOffload = false;
for j = 1:numEdges
if norm(vehicles(i).position - edges(j).position) <= distanceThreshold && ~isempty(edges(j).tasks)
edgeOffload = true;
break;
end
end
% Offload task to edge node if possible, otherwise to cloud
if edgeOffload
for j = 1:numEdges
if norm(vehicles(i).position - edges(j).position) <= distanceThreshold && ~isempty(edges(j).tasks)
task = vehicles(i).tasks(1);
vehicles(i).tasks(1) = [];
edges(j).tasks = [edges(j).tasks; task];
disp(['Task from vehicle ', num2str(i), ' offloaded to edge ', num2str(j)]);
break;
end
end
else
if ~isempty(cloud.tasks)
task = vehicles(i).tasks(1);
vehicles(i).tasks(1) = [];
cloud.tasks = [cloud.tasks; task];
disp(['Task from vehicle ', num2str(i), ' offloaded to cloud']);
end
end
end
% Process tasks at edge nodes
for j = 1:numEdges
if ~isempty(edges(j).tasks)
completedTasks = edges(j).tasks(edges(j).tasks <= t - communicationDelayEdge);
edges(j).tasks = setdiff(edges(j).tasks, completedTasks);
disp(['Edge ', num2str(j), ' processed ', num2str(length(completedTasks)), ' tasks']);
end
end
% Process tasks at the cloud
if ~isempty(cloud.tasks)
completedTasks = cloud.tasks(cloud.tasks <= t - communicationDelayCloud);
cloud.tasks = setdiff(cloud.tasks, completedTasks);
disp(['Cloud processed ', num2str(length(completedTasks)), ' tasks']);
end
% Move vehicles
for i = 1:numVehicles
vehicles(i).position = vehicles(i).position + randn(1, 2)*5; % Random movement
end
end
4 Comments
Voss
on 15 Mar 2024
Edited: Voss
on 15 Mar 2024
Use (this is what I had):
vehicles = struct('position', num2cell(rand(numVehicles, 2)*1000, 2), 'tasks', []);
not
vehicles = struct('position', num2cell(numVehicles, 2)*1000, 'tasks', []);
In othe words, num2cell doesn't replace rand; it converts the random matrix created by rand into a cell array that when passed to struct gives you a non-scalar structure array instead of a scalar structure.
(mtimes is the name of the * (multiplication) operator.)
More Answers (0)
See Also
Categories
Find more on Point Cloud Processing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!