You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Singularity Problem trying to Solve a higher order ODE with boundary conditions by bvp4c
5 views (last 30 days)
Show older comments
Juan Camilo Santana Contreras
on 12 Feb 2024
Hi, i'm trying to replicate the numerical solution of a recent paper "A macroeconomic model with
Heterogeneous and financially constrained intermediaries. Wouters, R (2019)"
(https://www.econstor.eu/bitstream/10419/207747/1/1067667695.pdf) but after many runs and different
modifications i always get the following issue:
elbarnew= 0.25; %(JCSC) Un valor de salida, siguiendo el rango prob de L&W (0.65,1.66)/(0.57, 3.02)
qlbarnew = 0.05; %(JCSC) Azar corto plazo, escoger inferior frente a qinf
eubar = 3; %(JCSC) Máximo valor de busqueda de e
KK = 500;
solinitF= bvpinit(linspace(elbarnew,eubar,KK),@Finitwithproduction_rw);
solF = bvp4c(@Fvecwithproduction_rw,@Fbcwithproduction_rw,solinitF,options);
Error using bvp4c
Unable to solve the collocation equations -- a singular Jacobian encountered.
The problem is to solve a nonlinear ODE of second order with boundary conditions (q2prime), that's the equation (32) of the
appendix A.4 from the paper. That is an expression of exogeneous parameters, the prime derivative (qprime) and the function itself
(q). The aim goal is to find a density function q(e) (it's a price, so q>0) with argument "e" (e>0). The boundary conditions
are qprime(e_)=0 and qprime(e^)=0, where e_ is a lower limit (e_>0) and e^ a higher limit. The functions are:
function yinit = Finitwithproduction_rw(x)
% ---- This function is the initial guess of the ODE solution, in the form of y(x) -----
global qprime elbarnew qlbarnew eubar qinf
% Note: Finitwithproduction returns a linear interpolation of functions q(e)
% (JCSC), returns [q(e), q'(e)]
qprime = (qinf - qlbarnew)/(eubar-elbarnew);
yinit = [qlbarnew + qprime*x
qprime];
end
function res=Fbcwithproduction_rw(ya, yb);
%(JCSC) Boundary Limits. The conditions
%required by the author (q'(e_) = 0, q'(e^-) = 0)
global qlbarnew
res=[%ya(1)-qlbarnew
ya(1)
yb(1)-0];
end
function dh=Fvecwithproduction_rw(x,y)
%(JCSC, 07-02-2024) Wouters Model
% Entrada x: valor de e; y=[q(e), q'(e)]
% Salida [q'(e), q''(e)]
global k delta kappa A iota m lambda zeta phi rho theta ...
sigma alpha_ti alpha_sb alpha_h i w sigma_r sigma_e ...
rr qprime q q2prime eta
%(JCSC) Here x is e in the paper. y is a vector y(x) = [q(x), q'(x)]
q=y(1,:);
qprime=y(2,:);
i = (delta + (q-1)./kappa); %(JCSC, 040224)
w = q.*k; %(JCSC ok)
%alpha_h = min(1, ((x.*k)./((1-lambda).*w))); %(JCSC, 040224)
alpha_h = min((1-lambda), ((x.*k)./w)); %(JCSC, 040224)
alpha_ti = ((((1-phi).*alpha_h.*(1-lambda)).^(-1)).*(zeta*(1-(qprime/q).*x).*sigma + ...
(qprime./q).*x.*phi)-(phi./(1-phi)))./(zeta.*(1-(qprime./q).*x).*sigma + (1-m).*(qprime./q).*x.*phi); %(JCSC, 270124 ok)
sigma_e = (x.*(((1-phi).*m.*alpha_ti - 1).*sigma + (phi./zeta)))./(1-(1-phi).*m.*alpha_ti.*x.*(qprime./q)); %(JCSC, revisado 040224)
sigma_r = sigma + (qprime./q).*sigma_e;
alpha_sb = 1./(zeta.*sigma_r); %(JCSC,ok)
f = A - delta + ((1 - q.^2)./(2.*kappa)); %(JCSC, nuevo modelo ajustado con la inclusión del empleo)
X1 = (1-phi).*m.*alpha_ti + phi.*alpha_sb; %(JCSC, revisado ok)
FF = (q./x) - X1.*qprime; %(JCSC, revisado ok)
G = kappa.*f.*FF + q.*((phi + m.*(1-phi)) - X1).*theta.*q.*qprime; %(JCSC, revisado, 270124)
rr = rho + theta.*(i-delta)-((0.5.*theta.*qprime.*qprime./(kappa.*f)).*(sigma_e.^2)) - ...
0.5.*theta.*(theta+1).*((sigma-(q.*qprime.*sigma_e./(kappa.*f))).^2);
A0 = 0.5.*(sigma_e.^2) + ((qprime.*kappa.*f)./G).*(0.5.*X1.*(sigma_e.^2) - ...
0.5.*theta.*(q.*q./kappa.*f).*(sigma.^2).*(m-phi.*m+phi-X1)).*((q./G).*(0.5.*theta.*q.*qprime.*X1.*(sigma_e.^2) + ...
0.5.*theta.*q.*FF.*(sigma_e.^2)));
A1 = -q.*(eta+i-delta) + X1.*(-delta.*q+A.*(1-iota)) + q.*(m-m.*phi+phi-X1).*rr;
A2 = kappa.*f.*FF.*rr - theta.*q.*q.*qprime.*(-eta-i+delta) - theta.*q.*qprime.*X1.*(A.*(1-iota) - delta.*q);
q2prime = (1./A0).*(alpha_ti.*(sigma_r.^2)./q) - A.*(1-iota) + delta.*q - qprime.*(kappa.*f./G).*A1 + (q./G).*A2;
dh=[y(2,:)
q2prime];
end
In the paper, the author identified values of "e" between 0.65 and 1.66 but running this range
on my code it doesn't work, so i had problems either identifiying the initial values or some equation inside
the Fvecwithproduction function, but i checked each one to avoid errors or anything else. The Fvecwithproduction
function just has the different equations required to get the equation (32) in the paper append.
From a numerical point of view, I would like to get some help or recommendation to establish the origin of the error, or some
help on matlab to find or explore initial values in this kind of exercises.
Thanks a lot
Juan Camilo,
10 Comments
Torsten
on 12 Feb 2024
Edited: Torsten
on 12 Feb 2024
We cannot execute your code - so we cannot help.
Why do you set q = 0 in the two boundary points
res=[%ya(1)-qlbarnew
ya(1)
yb(1)-0];
if you should set q' = 0
%(JCSC) Boundary Limits. The conditions
%required by the author (q'(e_) = 0, q'(e^-) = 0)
?
Juan Camilo Santana Contreras
on 13 Feb 2024
Edited: Torsten
on 13 Feb 2024
Hi Torsten, thanks. I changed to ya(2)=yb(2)=0 because the limit condition is about the first derivative as you said but the problem follows. I attach the m codes if you want to try. Thanks a lot!.The root file is "solve_baseline" with the parameters description.
%% ********** Section: Initialization **********
global sigma delta kappa A iinf iota m lambda eta zeta phi SR rho theta eubar ...
gamma0 elbarnew qlbarnew elbarnews qlbarnews N solinitF solF ...
alpha_sb_inf alpha_ti_inf qinf sigma_r_inf sigma_c_inf ...
winf k k_inf alpha_h_inf tau KK rr
global iter
iter =0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Key Paramters for Matching Momentsg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigma=0.05; %(JCSC, Capital quality shock)
delta=0.1; %(JCSC, depreciation rate)
kappa=20; %(JCSC, Adjustment cost)
A=0.35; %(JCSC, productivity constant)
iota=0.6; %(JCSC, wages share)
m=2.5; %(JCSC, multiplier risk aversion trad banks)
lambda=0.5; %(JCSC, debt ratio)
eta=0.15; %(JCSC, Bankers exit rate)
zeta=5; %(JCSC, tightness sb bankers funding constraint)
phi=0.3; %0.3; %(JCSC, Shadow Banking Equity share)
SR=2; %(JCSC, Entry Sharpe ratio = (uR-r)/sigmaR)
rho=0.03;%(JCSC, doscount rate)
theta=2;%(JCSC, households risk aversion)
k = 1; %(JCSC) Stock capital agregado de la economia
tau=0.88; % =p(elbar)beta/(1+elbar*beta)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Escenarios para q(e) y valores de e
% Cuando e --> oo
% _inf hace referencia a los valores lÃmite en cada estado
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k_inf = k;
sigma_r_inf = sigma; %(JCSC) Volatilidad del retorno R
sigma_c_inf = sigma; %(JCSC) Volatilidad de Consumo
alpha_h_inf = 1; %(JCSC) Cuando e--->oo, min(1, eK/(1-lambda)W) = 1
alpha_sb_inf = 1./(zeta.*sigma_r_inf);%(JCSC) Optimización participación largo plazo en SB
alpha_ti_inf = ((((1-phi).*(1-lambda).*alpha_h_inf).^(-1)) - ((phi./(1-phi)))).*alpha_sb_inf;%(JCSC) parametrizacion de largo plazo
gamma0 = delta + rho - (theta./kappa) + 0.5.*(theta.*(theta+1).*(sigma.^2)) + ((sigma.^2).*m.*alpha_ti_inf);%(JCSC) redefinición de un parámetro
%qinf1 = (-(gamma0.*kappa) - sqrt(((gamma0.*kappa).^2) + 4.*theta.*kappa.*A.*(1-iota)))./(2.*theta); %(JCSC) Valor de largo plazo de q, cuando e tiende a infinito
qinf = (-(gamma0.*kappa) + sqrt(((gamma0.*kappa).^2) + 4.*theta.*kappa.*A.*(1-iota)))./(2.*theta); %(JCSC) Valor de largo plazo de q, cuando e tiende a infinito
winf = qinf.*k_inf;%(JCSC) Riqueza total de la economia cuando e--> infty
iinf = delta + ((qinf - 1)/kappa); %(JCSC) Unidades de capital creadas
options=bvpset('relTol',1e-3,'NMax',300000,'Vectorized','on');%,'BCJacobian',@bcjacnew);
options2=bvpset('relTol',1e-12,'NMax',300000,'Vectorized','on');%,'BCJacobian',@bcjacnew); % Higher accuracy. Default is 1e-3
%% Inicializacion
elbarnew= 0.25; %(JCSC) Un valor de salida, siguiendo el rango prob de L&W (0.65,1.66)/(0.57, 3.02)
qlbarnew = 0.5; %(JCSC) Azar corto plazo, escoger inferior frente a qinf
eubar = 20; %(JCSC) Máximo valor de busqueda de e
KK = 500;
solinitF= bvpinit(linspace(elbarnew,eubar,KK),@Finitwithproduction_rw);
solF = bvp4c(@Fvecwithproduction_rw,@Fbcwithproduction_rw,solinitF,options);
dh = 2×2
0.0147 0.0147
-0.1078 -0.1078
dh = 2×2
0.0147 0.0147
-2.0173 -2.0173
dh = 2×2
0.0147 0.0147
0.0913 0.0913
dh = 2×2
0.0147 0.0147
0.0155 0.0155
dh = 2×2
0.0147 0.0147
0.0003 0.0003
dh = 2×2
0.0383 0.0383
18.5995 18.5995
dh = 2×2
-0.0087 -0.0087
-0.0731 -0.0731
dh = 2×2
0.0365 0.0365
-4.2224 -4.2224
dh = 2×2
0.0332 0.0332
0.0695 0.0695
dh = 2×2
0.0308 0.0308
0.1061 0.1061
dh = 2×2
0.0000 0.0000
0.0903 0.0903
dh = 2×2
0.0423 0.0423
0.4780 0.4780
dh = 2×2
-0.0095 -0.0095
-0.0621 -0.0621
dh = 2×2
0.0367 0.0367
-1.2078 -1.2078
dh = 2×2
0.0334 0.0334
0.0668 0.0668
dh = 2×2
0.0309 0.0309
0.1108 0.1108
dh = 2×2
0.0000 0.0000
0.0509 0.0509
dh = 2×2
0.0593 0.0593
0.7619 0.7619
dh = 2×2
0.0449 0.0449
0.5661 0.5661
dh = 2×2
-0.0103 -0.0103
-0.0020 -0.0020
dh = 2×2
-0.0103 -0.0103
-0.0415 -0.0415
dh = 2×2
-0.0099 -0.0099
-0.0542 -0.0542
dh = 2×2
-0.0100 -0.0100
-0.0541 -0.0541
dh = 2×2
-0.0100 -0.0100
-0.0484 -0.0484
dh = 2×2
0.0374 0.0374
0.2622 0.2622
dh = 2×2
0.0362 0.0362
-35.5151 -35.5151
dh = 2×2
0.0351 0.0351
-0.0080 -0.0080
dh = 2×2
0.0347 0.0347
0.0352 0.0352
dh = 2×2
0.0334 0.0334
0.0656 0.0656
dh = 2×2
1.0e+03 *
-0.0428 -0.0428
-5.6641 -5.6641
dh = 2×2
0.0323 0.0323
0.0843 0.0843
dh = 2×2
0.0314 0.0314
0.1067 0.1067
dh = 2×2
0.0305 0.0305
0.0741 0.0741
dh = 2×2
0.0302 0.0302
-2.9545 -2.9545
dh = 2×2
0.0005 0.0005
-0.0103 -0.0103
dh = 2×2
-0.0001 -0.0001
-0.0132 -0.0132
dh = 2×2
0.0107 0.0107
0.4057 0.4057
dh = 2×2
0.0460 0.0460
0.5996 0.5996
dh = 2×2
-0.0030 -0.0030
-0.0159 -0.0159
dh = 2×2
-0.0100 -0.0100
-0.0434 -0.0434
dh = 2×2
-0.0100 -0.0100
-0.0548 -0.0548
dh = 2×2
-0.0100 -0.0100
-0.0546 -0.0546
dh = 2×2
-0.0097 -0.0097
-0.0522 -0.0522
dh = 2×2
0.0380 0.0380
-0.0800 -0.0800
dh = 2×2
0.0366 0.0366
-8.0965 -8.0965
dh = 2×2
0.0356 0.0356
0.0132 0.0132
dh = 2×2
0.0333 0.0333
0.0630 0.0630
dh = 2×2
0.0304 0.0304
1.2016 1.2016
dh = 2×2
0.0322 0.0322
0.0872 0.0872
dh = 2×2
0.0313 0.0313
0.1101 0.1101
dh = 2×2
0.0306 0.0306
0.0393 0.0393
dh = 2×2
0.0299 0.0299
-1.9850 -1.9850
dh = 2×2
0.0022 0.0022
-5.3315 -5.3315
dh = 2×2
-0.0000 -0.0000
0.0050 0.0050
dh = 2×2
0.0470 0.0470
1.0441 1.0441
dh = 2×2
-0.0601 -0.0601
-0.1144 -0.1144
dh = 2×2
-0.0148 -0.0148
0.0071 0.0071
dh = 2×2
-0.0144 -0.0144
-0.0007 -0.0007
dh = 2×2
-0.0138 -0.0138
0.0041 0.0041
dh = 2×2
-0.0135 -0.0135
0.0233 0.0233
dh = 2×2
-0.0133 -0.0133
0.0499 0.0499
dh = 2×2
0.0257 0.0257
0.3491 0.3491
dh = 2×2
0.0246 0.0246
0.2042 0.2042
dh = 2×2
0.0227 0.0227
0.1641 0.1641
dh = 2×2
0.0223 0.0223
0.1337 0.1337
dh = 2×2
0.0292 0.0292
0.0945 0.0945
dh = 2×2
0.0294 0.0294
0.1052 0.1052
dh = 2×2
0.0286 0.0286
0.1128 0.1128
dh = 2×2
0.0306 0.0306
-0.2856 -0.2856
dh = 2×2
0.0239 0.0239
-5.4407 -5.4407
dh = 2×2
0.0000 0.0000
0.1333 0.1333
dh = 2×2
0.0001 0.0001
0.0613 0.0613
dh = 2×2
1.0e+08 *
0.0000 0.0000
-2.1431 -2.1431
dh = 2×2
0.0031 0.0031
0.3902 0.3902
dh = 2×2
-0.0269 -0.0269
-2.2639 -2.2639
dh = 2×2
-0.0031 -0.0031
0.0052 0.0052
dh = 2×2
-0.0035 -0.0035
-0.0028 -0.0028
dh = 2×2
-0.0035 -0.0035
0.0021 0.0021
dh = 2×2
0.0072 0.0072
0.1824 0.1824
dh = 2×2
0.0097 0.0097
0.1858 0.1858
dh = 2×2
0.0091 0.0091
0.1639 0.1639
dh = 2×2
0.0082 0.0082
0.1521 0.1521
dh = 2×2
0.0080 0.0080
0.1471 0.1471
dh = 2×2
0.0300 0.0300
0.0954 0.0954
dh = 2×2
0.0290 0.0290
0.1127 0.1127
dh = 2×2
0.0281 0.0281
0.0737 0.0737
dh = 2×2
0.0317 0.0317
-2.4049 -2.4049
dh = 2×2
-0.0014 -0.0014
-3.6400 -3.6400
dh = 2×2
0.0000 0.0000
0.0472 0.0472
dh = 2×2
0.5402 0.5402
0.3330 0.3330
dh = 2×2
0.4216 0.4216
-0.1488 -0.1488
dh = 2×2
0.1588 0.1588
0.8154 0.8154
dh = 2×2
0.1308 0.1308
0.5971 0.5971
dh = 2×2
1.6843 1.6843
0.1200 0.1200
dh = 2×2
0.1728 0.1728
-1.7258 -1.7258
dh = 2×2
0.1824 0.1824
-0.8590 -0.8590
dh = 2×2
-0.1109 -0.1109
-0.0357 -0.0357
dh = 2×2
-0.1065 -0.1065
-0.0333 -0.0333
dh = 2×2
0.9766 0.9766
-0.4332 -0.4332
dh = 2×2
0.4755 0.4755
-0.3074 -0.3074
dh = 2×2
-0.0507 -0.0507
-0.0168 -0.0168
dh = 2×2
0.0307 0.0307
-0.0559 -0.0559
dh = 2×2
0.0427 0.0427
-0.0094 -0.0094
dh = 2×2
0.0422 0.0422
-0.0061 -0.0061
dh = 2×2
0.0383 0.0383
-0.0211 -0.0211
dh = 2×2
0.0337 0.0337
-0.0404 -0.0404
dh = 2×2
0.0732 0.0732
-3.4173 -3.4173
dh = 2×2
-0.0441 -0.0441
0.1018 0.1018
dh = 2×2
-0.0425 -0.0425
0.1041 0.1041
dh = 2×2
-0.0414 -0.0414
0.1107 0.1107
dh = 2×2
0.0899 0.0899
-1.0081 -1.0081
dh = 2×2
-0.1117 -0.1117
-0.7110 -0.7110
dh = 2×2
0.0544 0.0544
2.0899 2.0899
dh = 2×2
0.0709 0.0709
-1.4706 -1.4706
dh = 2×2
0.0721 0.0721
-1.2320 -1.2320
dh = 2×2
0.0704 0.0704
-1.1630 -1.1630
dh = 2×2
0.0691 0.0691
-1.1004 -1.1004
dh = 2×2
0.0690 0.0690
-1.0583 -1.0583
dh = 2×2
0.0660 0.0660
-1.1042 -1.1042
dh = 2×2
0.0650 0.0650
-1.4438 -1.4438
dh = 2×2
0.0640 0.0640
-5.7325 -5.7325
dh = 2×2
0.0628 0.0628
-107.9285 -107.9285
dh = 2×2
0.0642 0.0642
-1.0978 -1.0978
dh = 2×2
0.0662 0.0662
-0.5030 -0.5030
dh = 2×2
1.0e+08 *
-0.0001 -0.0001
-1.4457 -1.4457
dh = 2×2
0.0331 0.0331
0.0774 0.0774
dh = 2×2
0.0318 0.0318
0.0853 0.0853
dh = 2×2
0.0316 0.0316
0.0917 0.0917
dh = 2×2
0.0320 0.0320
0.0985 0.0985
dh = 2×2
0.0311 0.0311
0.1060 0.1060
dh = 2×2
0.0307 0.0307
0.1130 0.1130
dh = 2×2
0.0304 0.0304
0.1062 0.1062
dh = 2×2
0.0296 0.0296
0.0653 0.0653
dh = 2×2
0.0321 0.0321
-0.0991 -0.0991
dh = 2×2
0.0327 0.0327
-0.8541 -0.8541
dh = 2×2
0.0333 0.0333
-5.0524 -5.0524
dh = 2×2
0.0044 0.0044
-0.0510 -0.0510
dh = 2×2
1.0e+14 *
0.0000 0.0000
-1.0144 -1.0144
dh = 2×2
0.0002 0.0002
0.0976 0.0976
dh = 2×2
0.0000 0.0000
0.0484 0.0484
dh = 2×2
-0.0000 -0.0000
0.0014 0.0014
dh = 2×2
0.0483 0.0483
3.3986 3.3986
dh = 2×2
0.5088 0.5088
1.3211 1.3211
dh = 2×2
-15.9245 -15.9245
-502.7372 -502.7372
dh = 2×2
-21.6221 -21.6221
-54.7345 -54.7345
dh = 2×2
10.2057 10.2057
956.6311 956.6311
dh = 2×2
21.3405 21.3405
681.7923 681.7923
dh = 2×2
-12.2434 -12.2434
-18.3337 -18.3337
dh = 2×2
-11.8752 -11.8752
-1.5701 -1.5701
dh = 2×2
-10.7987 -10.7987
-4.5747 -4.5747
dh = 2×2
73.9434 73.9434
392.5885 392.5885
dh = 2×2
40.6065 40.6065
223.3897 223.3897
dh = 2×2
6.7762 6.7762
192.2360 192.2360
dh = 2×2
-3.3070 -3.3070
-22.1418 -22.1418
dh = 2×2
-4.1990 -4.1990
1.2099 1.2099
dh = 2×2
-4.2116 -4.2116
2.5031 2.5031
dh = 2×2
-3.9564 -3.9564
2.6007 2.6007
dh = 2×2
-3.3657 -3.3657
-1.7237 -1.7237
dh = 2×2
-2.6356 -2.6356
-23.1038 -23.1038
dh = 2×2
4.6843 4.6843
218.0335 218.0335
dh = 2×2
4.2554 4.2554
205.9342 205.9342
dh = 2×2
3.9683 3.9683
194.6370 194.6370
dh = 2×2
9.0244 9.0244
174.8603 174.8603
dh = 2×2
20.7450 20.7450
186.9753 186.9753
dh = 2×2
6.7712 6.7712
182.5258 182.5258
dh = 2×2
7.3742 7.3742
165.3189 165.3189
dh = 2×2
7.2144 7.2144
149.1610 149.1610
dh = 2×2
7.1112 7.1112
134.2499 134.2499
dh = 2×2
7.0847 7.0847
120.6346 120.6346
dh = 2×2
7.1530 7.1530
108.3512 108.3512
dh = 2×2
6.6522 6.6522
96.1683 96.1683
dh = 2×2
6.6919 6.6919
87.5782 87.5782
dh = 2×2
6.5848 6.5848
78.1661 78.1661
dh = 2×2
6.4350 6.4350
69.5656 69.5656
dh = 2×2
6.0220 6.0220
60.9962 60.9962
dh = 2×2
-16.7809 -16.7809
109.5217 109.5217
dh = 2×2
0.0340 0.0340
0.0724 0.0724
dh = 2×2
0.0311 0.0311
0.0839 0.0839
dh = 2×2
0.0305 0.0305
0.0897 0.0897
dh = 2×2
0.0302 0.0302
0.0956 0.0956
dh = 2×2
0.0295 0.0295
0.1015 0.1015
dh = 2×2
0.0286 0.0286
0.1098 0.1098
dh = 2×2
0.0275 0.0275
0.1137 0.1137
dh = 2×2
0.0256 0.0256
0.1112 0.1112
dh = 2×2
0.0270 0.0270
0.0866 0.0866
dh = 2×2
0.0202 0.0202
0.0868 0.0868
dh = 2×2
0.0014 0.0014
0.3232 0.3232
dh = 2×2
-0.0572 -0.0572
-1.7932 -1.7932
dh = 2×2
1.0e+11 *
-0.0000 -0.0000
-3.8058 -3.8058
dh = 2×2
0.0003 0.0003
-0.0801 -0.0801
dh = 2×2
-0.0004 -0.0004
0.0861 0.0861
dh = 2×2
-0.0003 -0.0003
0.0742 0.0742
dh = 2×2
0.0000 0.0000
0.0533 0.0533
dh = 2×2
1.0e+07 *
0.0006 0.0006
4.9979 4.9979
dh = 2×2
1.0e+06 *
0.9697 0.9697
1.2178 1.2178
dh = 2×2
-37.4979 -37.4979
445.4171 445.4171
dh = 2×2
58.7314 58.7314
204.4525 204.4525
dh = 2×2
-7.0997 -7.0997
339.5358 339.5358
dh = 2×2
-17.7718 -17.7718
276.4847 276.4847
dh = 2×2
-41.8949 -41.8949
118.8737 118.8737
dh = 2×2
-50.4507 -50.4507
69.0725 69.0725
dh = 2×2
-11.9477 -11.9477
35.2788 35.2788
dh = 2×2
-5.8335 -5.8335
24.4580 24.4580
dh = 2×2
-5.6423 -5.6423
13.1683 13.1683
dh = 2×2
-28.0522 -28.0522
7.7959 7.7959
dh = 2×2
-9.7556 -9.7556
2.0954 2.0954
dh = 2×2
-5.5345 -5.5345
-10.1605 -10.1605
dh = 2×2
-4.4414 -4.4414
4.9610 4.9610
dh = 2×2
-46.3764 -46.3764
-98.7716 -98.7716
dh = 2×2
-11.5926 -11.5926
-288.4434 -288.4434
dh = 2×2
-0.1799 -0.1799
-0.0484 -0.0484
dh = 2×2
-0.1680 -0.1680
-0.0505 -0.0505
dh = 2×2
-0.1579 -0.1579
-0.0525 -0.0525
dh = 2×2
-0.4144 -0.4144
-0.4662 -0.4662
dh = 2×2
-0.3130 -0.3130
-0.5160 -0.5160
dh = 2×2
-0.2468 -0.2468
-0.1080 -0.1080
dh = 2×2
-0.3592 -0.3592
-0.2449 -0.2449
dh = 2×2
-0.4050 -0.4050
-0.3648 -0.3648
dh = 2×2
-0.4815 -0.4815
-0.6190 -0.6190
dh = 2×2
-0.5846 -0.5846
-1.1117 -1.1117
dh = 2×2
-0.8235 -0.8235
-2.7338 -2.7338
dh = 2×2
-1.8727 -1.8727
-17.7746 -17.7746
dh = 2×2
1.0e+03 *
-0.0202 -0.0202
-2.9961 -2.9961
dh = 2×2
1.3215 1.3215
-0.7339 -0.7339
dh = 2×2
0.4366 0.4366
-0.2638 -0.2638
dh = 2×2
0.2111 0.2111
-0.2427 -0.2427
dh = 2×2
0.1043 0.1043
-15.7506 -15.7506
dh = 2×2
0.0051 0.0051
0.0034 0.0034
dh = 2×2
0.0442 0.0442
-1.2905 -1.2905
dh = 2×2
-0.0636 -0.0636
-0.3974 -0.3974
dh = 2×2
-0.0612 -0.0612
-0.3874 -0.3874
dh = 2×2
-0.0584 -0.0584
-0.3790 -0.3790
dh = 2×2
-0.0360 -0.0360
-0.3946 -0.3946
dh = 2×2
-0.0606 -0.0606
-0.3900 -0.3900
dh = 2×2
-0.0653 -0.0653
-0.3955 -0.3955
dh = 2×2
-0.0746 -0.0746
-0.4132 -0.4132
dh = 2×2
-0.0832 -0.0832
-0.4390 -0.4390
dh = 2×2
-0.1254 -0.1254
-0.5107 -0.5107
dh = 2×2
-0.1107 -0.1107
-0.5407 -0.5407
dh = 2×2
-0.0295 -0.0295
-0.7350 -0.7350
dh = 2×2
-0.1183 -0.1183
-0.6998 -0.6998
dh = 2×2
1.0e+09 *
0.0000 0.0000
-1.2580 -1.2580
dh = 2×2
-0.0092 -0.0092
-0.0724 -0.0724
dh = 2×2
-0.0030 -0.0030
-0.0169 -0.0169
dh = 2×2
-0.0089 -0.0089
-0.0763 -0.0763
dh = 2×2
-0.0061 -0.0061
-0.0276 -0.0276
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
7.1103 7.1103
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
6.4526 6.4526
dh = 2×2
1.0e+05 *
0.0237 0.0237
4.8692 4.8692
dh = 2×2
1.0e+06 *
0.0036 0.0036
1.0661 1.0661
dh = 2×2
1.0e+06 *
-0.0007 -0.0007
3.4728 3.4728
dh = 2×2
1.0e+06 *
-0.0007 -0.0007
3.1221 3.1221
dh = 2×2
1.0e+06 *
0.0043 0.0043
2.0972 2.0972
dh = 2×2
1.0e+06 *
0.0023 0.0023
1.2432 1.2432
dh = 2×2
1.0e+05 *
0.0317 0.0317
8.7913 8.7913
dh = 2×2
1.0e+06 *
0.0037 0.0037
1.8182 1.8182
dh = 2×2
1.0e+06 *
0.0034 0.0034
2.3066 2.3066
dh = 2×2
1.0e+05 *
-0.0176 -0.0176
8.4961 8.4961
dh = 2×2
1.0e+05 *
-0.0417 -0.0417
2.4247 2.4247
dh = 2×2
1.0e+03 *
-0.3223 -0.3223
5.4093 5.4093
dh = 2×2
1.0e+03 *
-0.3531 -0.3531
8.1148 8.1148
dh = 2×2
1.0e+03 *
-0.2220 -0.2220
2.5677 2.5677
dh = 2×2
196.1492 196.1492
37.1911 37.1911
dh = 2×2
133.7079 133.7079
-23.2925 -23.2925
dh = 2×2
118.5936 118.5936
-27.9594 -27.9594
dh = 2×2
105.5215 105.5215
-32.3611 -32.3611
dh = 2×2
22.1290 22.1290
3.0655 3.0655
dh = 2×2
47.3056 47.3056
-52.7958 -52.7958
dh = 2×2
-14.7370 -14.7370
3.5156 3.5156
dh = 2×2
1.0e+06 *
0.0003 0.0003
1.3339 1.3339
dh = 2×2
1.0e+03 *
-0.8081 -0.8081
5.1020 5.1020
dh = 2×2
43.4785 43.4785
988.8937 988.8937
dh = 2×2
1.0e+03 *
0.0348 0.0348
1.4384 1.4384
dh = 2×2
1.0e+03 *
0.0254 0.0254
6.6118 6.6118
dh = 2×2
1.0e+03 *
0.0175 0.0175
2.1136 2.1136
dh = 2×2
9.5851 9.5851
-5.1241 -5.1241
dh = 2×2
1.0e+03 *
0.0009 0.0009
-7.5126 -7.5126
dh = 2×2
23.4448 23.4448
-17.7494 -17.7494
dh = 2×2
55.9516 55.9516
350.3244 350.3244
dh = 2×2
27.9232 27.9232
675.3021 675.3021
dh = 2×2
5.1483 5.1483
293.8798 293.8798
dh = 2×2
-4.3186 -4.3186
27.8830 27.8830
dh = 2×2
55.2282 55.2282
463.7980 463.7980
dh = 2×2
-42.2960 -42.2960
-965.8450 -965.8450
dh = 2×2
6.1115 6.1115
-45.6414 -45.6414
dh = 2×2
6.0453 6.0453
-71.3143 -71.3143
dh = 2×2
8.3305 8.3305
-214.9790 -214.9790
dh = 2×2
6.8401 6.8401
-239.2514 -239.2514
dh = 2×2
6.1363 6.1363
-361.6797 -361.6797
dh = 2×2
6.6309 6.6309
-188.0361 -188.0361
dh = 2×2
7.4409 7.4409
-480.4486 -480.4486
dh = 2×2
1.0e+03 *
0.0074 0.0074
-1.1760 -1.1760
dh = 2×2
1.0e+04 *
0.0010 0.0010
-1.3729 -1.3729
dh = 2×2
1.0e+04 *
-0.0003 -0.0003
-1.6133 -1.6133
dh = 2×2
7.3048 7.3048
-354.2474 -354.2474
dh = 2×2
51.0145 51.0145
-593.1157 -593.1157
dh = 2×2
1.0e+15 *
-0.0000 -0.0000
-1.2330 -1.2330
dh = 2×2
5.9401 5.9401
378.4035 378.4035
dh = 2×2
4.9723 4.9723
389.9277 389.9277
dh = 2×2
2.5725 2.5725
200.2486 200.2486
dh = 2×2
4.3264 4.3264
353.8195 353.8195
dh = 2×2
1.0e+24 *
-0.0000 -0.0000
4.5042 4.5042
dh = 2×2
1.0e+23 *
-0.0000 -0.0000
1.4212 1.4212
dh = 2×2
1.0e+29 *
-0.0000 -0.0000
3.9343 3.9343
dh = 2×2
1.0e+30 *
-0.0000 -0.0000
5.0100 5.0100
dh = 2×2
1.0e+17 *
-0.0002 -0.0002
8.2589 8.2589
dh = 2×2
1.0e+18 *
0.0000 0.0000
1.8200 1.8200
dh = 2×2
1.0e+18 *
0.0000 0.0000
1.9327 1.9327
dh = 2×2
1.0e+20 *
0.0000 0.0000
2.5117 2.5117
dh = 2×2
1.0e+13 *
0.0030 0.0030
8.1895 8.1895
dh = 2×2
1.0e+13 *
0.0000 0.0000
4.8261 4.8261
dh = 2×2
1.0e+13 *
0.0000 0.0000
4.5013 4.5013
dh = 2×2
1.0e+13 *
0.0000 0.0000
4.0562 4.0562
dh = 2×2
1.0e+13 *
0.0007 0.0007
7.0034 7.0034
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
9.5558 9.5558
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.0107 1.0107
dh = 2×2
1.0e+14 *
0.0000 0.0000
1.0858 1.0858
dh = 2×2
1.0e+14 *
0.0000 0.0000
1.0440 1.0440
dh = 2×2
1.0e+13 *
0.0000 0.0000
9.8146 9.8146
dh = 2×2
1.0e+13 *
0.0000 0.0000
9.2226 9.2226
dh = 2×2
1.0e+13 *
0.0000 0.0000
8.2591 8.2591
dh = 2×2
1.0e+13 *
0.0000 0.0000
7.9053 7.9053
dh = 2×2
1.0e+13 *
0.0000 0.0000
7.7112 7.7112
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
9.1619 9.1619
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.1073 1.1073
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.3749 1.3749
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.7995 1.7995
dh = 2×2
1.0e+14 *
0.0000 0.0000
1.3538 1.3538
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
6.4482 6.4482
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
6.4098 6.4098
dh = 2×2
1.0e+13 *
0.0000 0.0000
4.4261 4.4261
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
4.1286 4.1286
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
5.0151 5.0151
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
6.1553 6.1553
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
7.3522 7.3522
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
8.7247 8.7247
dh = 2×2
1.0e+13 *
0.0000 0.0000
8.8815 8.8815
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.0768 1.0768
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.1747 1.1747
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
1.2027 1.2027
dh = 2×2
1.0e+13 *
0.0000 0.0000
5.9464 5.9464
dh = 2×2
1.0e+13 *
0.0001 0.0001
5.8462 5.8462
dh = 2×2
1.0e+13 *
-0.0019 -0.0019
6.9328 6.9328
dh = 2×2
1.0e+13 *
0.0000 0.0000
3.6351 3.6351
dh = 2×2
1.0e+13 *
0.0000 0.0000
2.2188 2.2188
dh = 2×2
1.0e+12 *
0.0000 0.0000
3.3675 3.3675
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.9979 1.9979
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.3354 1.3354
dh = 2×2
1.0e+11 *
-0.0001 -0.0001
9.9622 9.9622
dh = 2×2
1.0e+12 *
-0.0000 -0.0000
1.3773 1.3773
dh = 2×2
1.0e+12 *
-0.0000 -0.0000
1.9377 1.9377
dh = 2×2
1.0e+12 *
0.0000 0.0000
2.0070 2.0070
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.4630 1.4630
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.0690 1.0690
dh = 2×2
1.0e+11 *
0.0001 0.0001
7.7614 7.7614
dh = 2×2
1.0e+11 *
0.0001 0.0001
5.1217 5.1217
dh = 2×2
1.0e+10 *
0.0009 0.0009
4.5213 4.5213
dh = 2×2
1.0e+10 *
0.0008 0.0008
3.2313 3.2313
dh = 2×2
1.0e+10 *
0.0035 0.0035
1.4198 1.4198
dh = 2×2
1.0e+09 *
0.0043 0.0043
1.1710 1.1710
dh = 2×2
1.0e+11 *
-0.0008 -0.0008
2.8732 2.8732
dh = 2×2
1.0e+08 *
-0.6572 -0.6572
-2.1049 -2.1049
dh = 2×2
1.0e+08 *
-0.5778 -0.5778
-7.2043 -7.2043
dh = 2×2
1.0e+10 *
-0.0053 -0.0053
8.8899 8.8899
dh = 2×2
1.0e+11 *
-0.0005 -0.0005
1.5281 1.5281
dh = 2×2
1.0e+07 *
-4.5526 -4.5526
0.6427 0.6427
dh = 2×2
1.0e+07 *
-4.4282 -4.4282
7.8073 7.8073
dh = 2×2
1.0e+10 *
-0.0043 -0.0043
6.4098 6.4098
dh = 2×2
1.0e+07 *
-4.0314 -4.0314
0.5807 0.5807
dh = 2×2
1.0e+10 *
-0.0038 -0.0038
-2.5585 -2.5585
dh = 2×2
1.0e+10 *
-0.0036 -0.0036
3.9874 3.9874
dh = 2×2
1.0e+06 *
5.3726 5.3726
8.6442 8.6442
dh = 2×2
1.0e+07 *
-3.2383 -3.2383
1.4300 1.4300
dh = 2×2
1.0e+10 *
-0.0032 -0.0032
4.2212 4.2212
dh = 2×2
1.0e+07 *
-3.0814 -3.0814
0.0842 0.0842
dh = 2×2
1.0e+10 *
-0.0027 -0.0027
7.2754 7.2754
dh = 2×2
1.0e+11 *
-0.0004 -0.0004
1.1180 1.1180
dh = 2×2
1.0e+10 *
-0.0034 -0.0034
2.1886 2.1886
dh = 2×2
1.0e+11 *
-0.0010 -0.0010
1.8530 1.8530
dh = 2×2
1.0e+11 *
0.0006 0.0006
1.2151 1.2151
dh = 2×2
1.0e+10 *
0.0051 0.0051
6.2405 6.2405
dh = 2×2
1.0e+11 *
0.0009 0.0009
1.0357 1.0357
dh = 2×2
1.0e+11 *
0.0005 0.0005
1.5544 1.5544
dh = 2×2
1.0e+11 *
-0.0002 -0.0002
2.7768 2.7768
dh = 2×2
1.0e+11 *
0.0020 0.0020
5.1189 5.1189
dh = 2×2
1.0e+12 *
-0.0001 -0.0001
6.2570 6.2570
dh = 2×2
1.0e+13 *
-0.0001 -0.0001
1.0025 1.0025
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
1.9564 1.9564
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
2.0888 2.0888
dh = 2×2
1.0e+13 *
0.0000 0.0000
2.7122 2.7122
dh = 2×2
1.0e+13 *
0.0000 0.0000
2.0194 2.0194
dh = 2×2
1.0e+14 *
-0.0002 -0.0002
1.2354 1.2354
dh = 2×2
1.0e+13 *
0.0001 0.0001
2.5414 2.5414
dh = 2×2
1.0e+13 *
0.0000 0.0000
1.4337 1.4337
dh = 2×2
1.0e+12 *
0.0001 0.0001
8.6061 8.6061
dh = 2×2
1.0e+12 *
0.0001 0.0001
5.1308 5.1308
dh = 2×2
1.0e+12 *
0.0000 0.0000
3.0341 3.0341
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.7822 1.7822
dh = 2×2
1.0e+12 *
0.0000 0.0000
1.0358 1.0358
dh = 2×2
1.0e+11 *
0.0002 0.0002
5.9536 5.9536
dh = 2×2
1.0e+11 *
0.0001 0.0001
3.3798 3.3798
dh = 2×2
1.0e+11 *
0.0001 0.0001
1.8916 1.8916
dh = 2×2
1.0e+10 *
0.0003 0.0003
5.6214 5.6214
dh = 2×2
1.0e+10 *
0.0002 0.0002
1.6750 1.6750
dh = 2×2
1.0e+09 *
0.0011 0.0011
5.7620 5.7620
dh = 2×2
1.0e+09 *
-0.0002 -0.0002
3.4271 3.4271
dh = 2×2
1.0e+09 *
-0.0003 -0.0003
2.4982 2.4982
dh = 2×2
1.0e+10 *
-0.0024 -0.0024
1.9052 1.9052
dh = 2×2
1.0e+11 *
0.0039 0.0039
9.8083 9.8083
dh = 2×2
1.0e+10 *
0.0003 0.0003
3.7474 3.7474
dh = 2×2
1.0e+11 *
-0.0003 -0.0003
2.1004 2.1004
dh = 2×2
1.0e+11 *
-0.0029 -0.0029
6.6646 6.6646
dh = 2×2
1.0e+13 *
-0.0002 -0.0002
8.5588 8.5588
dh = 2×2
1.0e+16 *
-0.0000 -0.0000
1.1970 1.1970
dh = 2×2
1.0e+16 *
0.0000 0.0000
1.9032 1.9032
dh = 2×2
1.0e+17 *
0.0000 0.0000
2.4406 2.4406
dh = 2×2
1.0e+18 *
0.0000 0.0000
4.4628 4.4628
dh = 2×2
1.0e+19 *
-0.0000 -0.0000
1.1216 1.1216
dh = 2×2
1.0e+17 *
-0.0000 -0.0000
6.3593 6.3593
dh = 2×2
1.0e+16 *
-0.0000 -0.0000
4.3638 4.3638
dh = 2×2
1.0e+15 *
-0.0000 -0.0000
3.9271 3.9271
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
4.7231 4.7231
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
7.5265 7.5265
dh = 2×2
1.0e+13 *
-0.0000 -0.0000
1.6247 1.6247
dh = 2×2
1.0e+12 *
-0.0000 -0.0000
4.7005 4.7005
dh = 2×2
1.0e+12 *
-0.0000 -0.0000
1.8052 1.8052
dh = 2×2
1.0e+11 *
-0.0001 -0.0001
8.6226 8.6226
dh = 2×2
1.0e+11 *
-0.0003 -0.0003
5.4199 5.4199
dh = 2×2
1.0e+11 *
-0.0002 -0.0002
4.3125 4.3125
dh = 2×2
1.0e+11 *
0.0000 0.0000
3.6660 3.6660
dh = 2×2
1.0e+11 *
-0.0001 -0.0001
2.4583 2.4583
dh = 2×2
1.0e+11 *
-0.0000 -0.0000
1.0026 1.0026
dh = 2×2
1.0e+10 *
-0.0007 -0.0007
1.1072 1.1072
dh = 2×2
1.0e+08 *
-0.0155 -0.0155
8.0132 8.0132
dh = 2×2
1.0e+05 *
9.5098 9.5098
-1.4126 -1.4126
dh = 2×2
1.0e+06 *
-1.2518 -1.2518
-0.4659 -0.4659
dh = 2×2
1.0e+06 *
-1.5135 -1.5135
-0.0388 -0.0388
dh = 2×2
1.0e+07 *
-0.1471 -0.1471
-5.1587 -5.1587
dh = 2×2
1.0e+07 *
-0.1372 -0.1372
1.5066 1.5066
dh = 2×2
1.0e+06 *
-1.2630 -1.2630
-0.0740 -0.0740
dh = 2×2
1.0e+06 *
-1.1179 -1.1179
0.0458 0.0458
dh = 2×2
1.0e+06 *
-0.9987 -0.9987
5.6527 5.6527
dh = 2×2
1.0e+05 *
-9.7007 -9.7007
-1.2923 -1.2923
dh = 2×2
1.0e+14 *
-0.0000 -0.0000
-2.4590 -2.4590
dh = 2×2
1.0e+06 *
-0.8380 -0.8380
2.8469 2.8469
dh = 2×2
1.0e+05 *
-7.7800 -7.7800
-1.1726 -1.1726
dh = 2×2
1.0e+06 *
-0.7188 -0.7188
-3.8868 -3.8868
dh = 2×2
1.0e+05 *
-6.6482 -6.6482
0.4693 0.4693
dh = 2×2
1.0e+05 *
-6.1700 -6.1700
-0.0749 -0.0749
dh = 2×2
1.0e+05 *
-5.6543 -5.6543
0.0212 0.0212
dh = 2×2
1.0e+05 *
-5.1481 -5.1481
0.2896 0.2896
dh = 2×2
1.0e+06 *
-1.1202 -1.1202
0.0006 0.0006
dh = 2×2
1.0e+05 *
-4.4243 -4.4243
0.0104 0.0104
dh = 2×2
1.0e+05 *
-3.8799 -3.8799
0.5737 0.5737
dh = 2×2
1.0e+05 *
-1.4882 -1.4882
0.2059 0.2059
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-1.2996 -1.2996
dh = 2×2
1.0e+04 *
4.6697 4.6697
-0.2417 -0.2417
dh = 2×2
1.0e+05 *
-6.3786 -6.3786
5.8219 5.8219
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-1.8260 -1.8260
dh = 2×2
1.0e+05 *
-1.1088 -1.1088
-0.4319 -0.4319
dh = 2×2
1.0e+05 *
-1.7209 -1.7209
7.0692 7.0692
dh = 2×2
1.0e+09 *
-0.0001 -0.0001
-4.6007 -4.6007
dh = 2×2
1.0e+05 *
-1.0880 -1.0880
-1.2958 -1.2958
dh = 2×2
1.0e+04 *
-9.2621 -9.2621
7.6787 7.6787
dh = 2×2
-937.5852 -937.5852
673.6611 673.6611
dh = 2×2
1.0e+06 *
-0.6977 -0.6977
2.8650 2.8650
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-2.7966 -2.7966
dh = 2×2
1.0e+04 *
7.2586 7.2586
-0.3980 -0.3980
dh = 2×2
1.0e+05 *
-5.5629 -5.5629
9.8861 9.8861
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-2.3724 -2.3724
dh = 2×2
1.0e+04 *
9.1433 9.1433
-2.5257 -2.5257
dh = 2×2
1.0e+05 *
-4.4383 -4.4383
2.9089 2.9089
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-1.9690 -1.9690
dh = 2×2
1.0e+05 *
-1.1438 -1.1438
-3.9481 -3.9481
dh = 2×2
1.0e+10 *
-0.0000 -0.0000
-1.6685 -1.6685
dh = 2×2
1.0e+05 *
-2.2420 -2.2420
0.3535 0.3535
dh = 2×2
1.0e+09 *
-0.0001 -0.0001
-1.8395 -1.8395
dh = 2×2
1.0e+05 *
-0.5724 -0.5724
-1.8579 -1.8579
dh = 2×2
1.0e+09 *
0.0492 0.0492
-3.0814 -3.0814
dh = 2×2
1.0e+04 *
-4.2986 -4.2986
-0.3239 -0.3239
dh = 2×2
1.0e+09 *
-0.0000 -0.0000
-6.1295 -6.1295
dh = 2×2
1.0e+04 *
1.2216 1.2216
-2.8625 -2.8625
dh = 2×2
1.0e+04 *
-0.6474 -0.6474
1.5819 1.5819
dh = 2×2
1.0e+07 *
0.0031 0.0031
-3.3489 -3.3489
dh = 2×2
1.0e+06 *
-0.0156 -0.0156
-1.8670 -1.8670
dh = 2×2
1.0e+04 *
-1.5564 -1.5564
0.3031 0.3031
dh = 2×2
1.0e+09 *
-0.0000 -0.0000
-1.6213 -1.6213
dh = 2×2
1.0e+08 *
-0.0003 -0.0003
-2.8633 -2.8633
dh = 2×2
1.0e+05 *
0.0533 0.0533
-2.0642 -2.0642
dh = 2×2
1.0e+04 *
-0.1832 -0.1832
1.0464 1.0464
dh = 2×2
1.0e+04 *
-0.1031 -0.1031
-2.1268 -2.1268
dh = 2×2
1.0e+05 *
4.0157 4.0157
0.1745 0.1745
dh = 2×2
1.0e+08 *
-0.0028 -0.0028
3.4078 3.4078
dh = 2×2
1.0e+08 *
-0.0054 -0.0054
2.7167 2.7167
dh = 2×2
1.0e+12 *
-0.0008 -0.0008
8.8346 8.8346
dh = 2×2
1.0e+13 *
0.0001 0.0001
1.2344 1.2344
dh = 2×2
1.0e+19 *
0.0000 0.0000
1.7700 1.7700
dh = 2×2
1.0e+18 *
-0.0000 -0.0000
6.0001 6.0001
dh = 2×2
1.0e+18 *
-0.0000 -0.0000
1.0255 1.0255
dh = 2×2
1.0e+19 *
0.0000 0.0000
2.5302 2.5302
dh = 2×2
1.0e+18 *
-0.0000 -0.0000
4.3637 4.3637
dh = 2×2
1.0e+20 *
-0.0000 -0.0000
1.2136 1.2136
dh = 2×2
1.0e+18 *
-0.0000 -0.0000
6.0925 6.0925
dh = 2×2
1.0e+18 *
0.0000 0.0000
5.9043 5.9043
dh = 2×2
1.0e+19 *
-0.0000 -0.0000
7.9326 7.9326
dh = 2×2
1.0e+22 *
-0.0000 -0.0000
1.7247 1.7247
dh = 2×2
1.0e+18 *
0.0000 0.0000
5.7937 5.7937
dh = 2×2
1.0e+20 *
0.0000 0.0000
3.6661 3.6661
dh = 2×2
1.0e+20 *
-0.0000 -0.0000
9.3180 9.3180
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
dh = 2×2
NaN NaN
NaN NaN
Error using bvp4c
Unable to solve the collocation equations -- a singular Jacobian encountered.
Unable to solve the collocation equations -- a singular Jacobian encountered.
%%%% Simulación Búsqueda a la Fuerza %%%%
N = 10;
elbarnews = linspace(0.05, 2, N);
qlbarnews = linspace(0.05, 2, N);
for i=1:N
ee = elbarnews(i);
for j=1:N
qq = qlbarnews(j);
try
solinitF= bvpinit(linspace(ee,eubar,KK),@Finitwithproduction_rw);
solF = bvp4c(@Fvecwithproduction_rw,@Fbcwithproduction_rw,solinitF,options);
catch ME
end
if(~isempty(solF))
fprintf("Posible Convergencia e = %f and q = %f", ee, qq);
end
end
end
solinitF= bvpinit(linspace(elbarnew,eubar,KK),@Finitwithproduction2);
solF=bvp4c(@Fvecwithproduction,@Fbcwithproduction,solinitF,options2);
subplot(2,1,1) % add first plot in 2 x 1 grid
plot( solF.x, solF.y(1,:) )
subplot(2,1,2) % add first plot in 2 x 1 grid
plot( solF.x, solF.y(2,:) )
function yinit = Finitwithproduction_rw(x)
% ---- This function is the initial guess of the ODE solution, in the form of y(x) -----
global qprime elbarnew qlbarnew eubar qinf
% Note: Finitwithproduction returns a linear interpolation of functions q(e)
% (JCSC), returns [q(e), q'(e)]
qprime = (qinf - qlbarnew)/(eubar-elbarnew);
yinit = [qlbarnew + qprime*x
qprime];
end
function dh=Fvecwithproduction_rw(x,y)
%(JCSC, 07-02-2024) función con la extensión del modelo Wouters
% Entrada x: valor de e; y=[q(e), q'(e)]
% Salida [q'(e), q''(e)]
global k delta kappa A iota m lambda zeta phi rho theta ...
sigma alpha_ti alpha_sb alpha_h i w sigma_r sigma_e ...
rr qprime q q2prime eta SR
global iter
%(JCSC) Here x is e in the paper. y is a vector y(x) = [q(x), q'(x)]
q=y(1,:);
qprime=y(2,:);
i = (delta + (q-1)./kappa); %(JCSC, 040224)
w = q.*k; %(JCSC ok)
%alpha_h = min(1, ((x.*k)./((1-lambda).*w))); %(JCSC, 040224)
alpha_h = min(1, (x./(1-lambda).*q)); %(JCSC, 040224)
alpha_ti = ((((1-phi).*alpha_h.*(1-lambda)).^(-1)).*(zeta*(1-(qprime/q).*x).*sigma + ...
(qprime./q).*x.*phi)-(phi./(1-phi)))./(zeta.*(1-(qprime./q).*x).*sigma + (1-m).*(qprime./q).*x.*phi); %(JCSC, 270124 ok)
sigma_e = (x.*(((1-phi).*m.*alpha_ti - 1).*sigma + (phi./zeta)))./(1-(1-phi).*m.*alpha_ti.*x.*(qprime./q)); %(JCSC, revisado 040224)
sigma_r = sigma + (qprime./q).*sigma_e;
alpha_sb = 1./(zeta.*sigma_r); %(JCSC,ok)
f = A - delta + ((1 - q.^2)./(2.*kappa)); %(JCSC, nuevo modelo ajustado con la inclusión del empleo)
X1 = (1-phi).*m.*alpha_ti + phi.*alpha_sb; %(JCSC, revisado ok)
FF = (q./x) - X1.*qprime; %(JCSC, revisado ok)
G = kappa.*f.*FF + q.*((phi + m.*(1-phi)) - X1).*theta.*q.*qprime; %(JCSC, revisado, 270124)
rr = rho + theta.*(i-delta)-((0.5.*theta.*qprime.*qprime./(kappa.*f)).*(sigma_e.^2)) - ...
0.5.*theta.*(theta+1).*((sigma-(q.*qprime.*sigma_e./(kappa.*f))).^2);
A0 = 0.5.*(sigma_e.^2) + ((qprime.*kappa.*f)./G).*(0.5.*X1.*(sigma_e.^2) - ...
0.5.*theta.*(q.*q./kappa.*f).*(sigma.^2).*(m-phi.*m+phi-X1)).*((q./G).*(0.5.*theta.*q.*qprime.*X1.*(sigma_e.^2) + ...
0.5.*theta.*q.*FF.*(sigma_e.^2)));
A1 = -q.*(eta+i-delta) + X1.*(-delta.*q+A.*(1-iota)) + q.*(m-m.*phi+phi-X1).*rr;
A2 = kappa.*f.*FF.*rr - theta.*q.*q.*qprime.*(-eta-i+delta) - theta.*q.*qprime.*X1.*(A.*(1-iota) - delta.*q);
q2prime = (1./A0).*(alpha_ti.*(sigma_r.^2)./q) - A.*(1-iota) + delta.*q - qprime.*(kappa.*f./G).*A1 + (q./G).*A2;
dh=[y(2,:)
q2prime];
iter = iter + 1;
if mod(iter,100)==0
iter = 0;
dh
end
end
function res=Fbcwithproduction_rw(ya, yb);
%(JCSC) Esta es la función Boundary Limits. The conditions
%required by the author (q'(e_) = 0, q'(e^-) = 0)
global qlbarnew
res=[%ya(1)-qlbarnew
ya(2)-0
yb(2)-0];
end
Juan Camilo Santana Contreras
on 13 Feb 2024
Hi, thanks for your help!. That's the way the algorithm works, but i don't know how it do it internally. In the following example (other different exercise with a solution), i print each iteration and you can see the number of data generated. I think, the algorithm is finding the data by blocks in each interation. When the algorithm ends and find a solution, the output is again the domain (solF.x, i our case the same interval [e-, e+]), and the endogeneous variables (solF.y, for example, q(e), q'(e), q''(e) ..) . So, the idea would be to check the iterations when the algorithm begins to give a NA, to identify the source of the error?. What do you think?
solF = bvp4c(@Fvecwithproduction,@Fbcwithproduction,solinitF,options);
Dimension 1 --- Dimension 500 --- Dimension 499 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 500 --- Dimension 499 --- Dimension 500 --- Dimension 499 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- Dimension 4 --- ... Output truncated. Text exceeds maximum line length for Command Window display.
solF
solF =
struct with fields:
solver: 'bvp4c'
x: [0.3500 0.3697 0.3894 0.4156 0.4419 0.4616 0.4813 0.5042 0.5272 0.5567 0.5863 0.6158 0.6453 0.6749 0.7044 0.7339 0.7635 0.7930 0.8225 0.8521 0.8816 0.9111 ... ] (1x1783 double)
y: [4x1783 double]
yp: [4x1783 double]
stats: [1x1 struct]
Torsten
on 13 Feb 2024
The structure above is as expected - you have 4 first-order differential equations given on an x-grid with 1783 points. But the size of the dh in your code is wrong: it must be 4x1, not 2x2. And yes: you will have to search for the reason why you get NaN values from the function.
Juan Camilo Santana Contreras
on 16 Feb 2024
Hi, again!. If i write the residual vector as 4x1, i would get something like this on the Fbcwithproduction function,
function res = Fbcwithproduction_rw(ya, yb);
global qlbarnew qinf;
res = [ya(1)-qlbarnew
ya(2)-0
yb(1)-qinf
yb(2)-0];
however, how i could fix the yinit = Finitwithproduction_rw(x) function?, because it has just one argument (x=e) and that function returns yinit = [q(e), q'(e)]. From a math or numerical point of view, would i have to use two arguments in the yinit function to make the difference between the limit and upper bound?; or let one argument, and calculate four values inside the function like this:
function yinit = Finitwithproduction_rw(x)
global qprime elbarnew qlbarnew eubar qinf
el_bar = x - epsilon; %Define a lower value of x
eu_bar = x + epsilon; %Define an upper value of x
qprime_lbar = (qinf - qlbarnew)/(eubar - el_bar);
qprime_ubar = (qinf - qlbarnew)/(eubar - eu_bar);
yinit = [qlbarnew + qprime_lbar*el_bar
qprime_lbar
qlbarnew + qprime_ubar*eu_bar
qprime_ubar];
Thanks, I appreciate any advice.
Juan Camilo Santana Contreras
on 16 Feb 2024
Moved: Torsten
on 16 Feb 2024
Yes, the code runs removing options on the dh 2x1 version and KK=5000, it doesn't converge but try to accomplish the conditions. On this output, the residual function is [ya(1)-qlbarnew, yb(2)-0]. I would need to add some conditions more in the searching to get a smoother path: q(e^) = qinf and q(e_)=tau, but i don't know how incorporate it. Thanks a lot!
Iter 190021 -- dh: 1
Warning: Unable to meet the tolerance without using more than 5000 mesh points.
The last mesh of 5000 points and the solution are available in the output argument.
The maximum residual is 1.47322, while requested accuracy is 0.001.
> In bvp4c (line 266)
Torsten
on 16 Feb 2024
I would need to add some conditions more in the searching to get a smoother path: q(e^) = qinf and q(e_)=tau, but i don't know how incorporate it.
You have a second-order differential equation. So there is no way to incorporate more than two boundary conditions.
Juan Camilo Santana Contreras
on 19 Jun 2024
Moved: Torsten
on 19 Jun 2024
Hi @Torsten, i was testing my code to get some solutions for a second order DE of a price q(x), but i'm getting some errors or unexpected jumps on the smooth solution (see attached file). At the smallest values of the domain, the smooth is not good, as you can see in the first and second order derivatives. The first 1000 points of the domain are ilustrated. Do you know how could i check the problem to get a better solution, a smoother solution. Thanks for any advice.
Answers (0)
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)