Solving system of odes with a power using ode45
4 views (last 30 days)
Show older comments
Thomas TJOCK-MBAGA
on 19 Sep 2023
Commented: William Rose
on 19 Sep 2023
I have the following system of first order ode i would like to solve it using ode45 1) dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext 2) dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr 3) dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti 4) dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu Satisfying X(0)=Y(0)=Z(0)=U(0)=0 Where the functions are X, Y,Z and U and the variable is t. The others parameters are known constant It is possible toi solve it with ode45 ? Since a power appear in the first equation
0 Comments
Accepted Answer
Sam Chak
on 19 Sep 2023
Edited: Sam Chak
on 19 Sep 2023
I presume that Xinit is not equal to , and . I tested this with the ode45 solver, and it also works with non-zero initial values.
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Create a function handle F for a system of 1st-order ODEs:
F = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
tspan = [0 10];
y0 = [3; 2; 1; 0];
[t, y] = ode45(F, tspan, y0);
% Plotting the result
plot(t, y, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Setting up the ODE object:
F = ode;
F.InitialValue = [3; 2; 1; 0];
F.ODEFcn = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
F.Solver = "ode45";
S = solve(F, 0, 10); % Solving F over the time from 0 to 10 s
% Plotting the result
plot(S.Time, S.Solution, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
12 Comments
More Answers (1)
William Rose
on 19 Sep 2023
Edited: William Rose
on 19 Sep 2023
Yes you can do it with ode45().
dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext
dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr
dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti
dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu
You want to replace X,Y,Z,U with x(1),x(2),x(3),x(4).
Your equation for dX/dt includes (X/Xinit)^frac. If Xinit=X(0), you have a divide-by-zero problem, since you said X(0)=0.
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!