Solving system of odes with a power using ode45

4 views (last 30 days)
I have the following system of first order ode i would like to solve it using ode45 1) dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext 2) dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr 3) dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti 4) dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu Satisfying X(0)=Y(0)=Z(0)=U(0)=0 Where the functions are X, Y,Z and U and the variable is t. The others parameters are known constant It is possible toi solve it with ode45 ? Since a power appear in the first equation

Accepted Answer

Sam Chak
Sam Chak on 19 Sep 2023
Edited: Sam Chak on 19 Sep 2023
I presume that Xinit is not equal to , and . I tested this with the ode45 solver, and it also works with non-zero initial values.
Method 1: Using the function ode45() directly
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Create a function handle F for a system of 1st-order ODEs:
F = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
tspan = [0 10];
y0 = [3; 2; 1; 0];
[t, y] = ode45(F, tspan, y0);
% Plotting the result
plot(t, y, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
Method 2: Using the 'ode' object (introduced in R2023b)
% Parameters
Xinit = 1;
frac = 1/2;
rext = 1;
rtra = 1;
rvol = 1;
Sr = 1;
Sti = 1;
Sfeu = 1;
% Setting up the ODE object:
F = ode;
F.InitialValue = [3; 2; 1; 0];
F.ODEFcn = @(t, y) [- 0.000038*y(1) - (y(1)*(y(1)/Xinit)^frac)*rext;
- 0.000038*y(2) + rext*y(1) - rtra*y(2) + Sr;
- 0.000038*y(3) + rext*y(2) - rtra*y(3) + Sti;
0.000038*y(4) + rext*y(3) - rvol*y(4) + Sfeu];
F.Solver = "ode45";
S = solve(F, 0, 10); % Solving F over the time from 0 to 10 s
% Plotting the result
plot(S.Time, S.Solution, "-o"), grid on
xlabel('Time, t (seconds)'), ylabel('\bf{y}(t)')
legend('X', 'Y', 'Z', 'U', 'location', 'NW')
  12 Comments
Thomas TJOCK-MBAGA
Thomas TJOCK-MBAGA on 19 Sep 2023
Non i have the same system but with thd first equation be a PDE i would like to solve it pdepe solver and using ode45 1) 1) R*dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext -v*dX/dx + alpha*d^2X/dx^2 2) dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr 3) dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti 4) dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu Satisfying Y(0)=Z(0)=U(0)=0 X(t,0)=0; dX/dx(t,x=L)=0; X(t=0,x)=Xinit Where the functions are X, Y,Z and U and the variable are x and t. The others parameters are known constant. If frac=0 i know how to.solve it with Laplace transform and then by an intégration over the space domaine i obtain X(t) and then the functions. No

Sign in to comment.

More Answers (1)

William Rose
William Rose on 19 Sep 2023
Edited: William Rose on 19 Sep 2023
Yes you can do it with ode45().
dX/dt = -0.000038*X - (X*(X/Xinit)^frac)*rext
dY/dt = - 0.000038*Y + rext*X - rtra*Y + Sr
dZ/dt = - 0.000038*Z + rext*Y - rtra*Z + Sti
dU/dt = 0.000038*U + rext*Z - rvol*U + Sfeu
You want to replace X,Y,Z,U with x(1),x(2),x(3),x(4).
Your equation for dX/dt includes (X/Xinit)^frac. If Xinit=X(0), you have a divide-by-zero problem, since you said X(0)=0.

Tags

Products


Release

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!