function [theta_p, epsilon_max, epsilon_min, Y_max_in] = P_7_C6(-260,-60,480,0.334)
%
% Define average normal strain
epsilon_avg = ((epsilon_x + epsilon_y)/2);
%
% Calculate, Radius of the Mohr circle
R = sqrt(((((epsilon_x) - (epsilon_y))/2)^2) + ((Y_xy/2)^2) );
%
% Calculate maximum principal strain
epsilon_max = epsilon_avg + R;
%
% Calculate minimum principal strain
epsilon_min = epsilon_avg - R;
%
% Locate the position of the principal plane
theta_p = (atand((Y_xy)/ ((epsilon_x) - (epsilon_y) ) ) )/2;
%
% Calculate maximum in-plane shear strain
Y_max_in = 2*R;
%
% Define third principal strain along an axis perpendicular
% to the plane of stress.
epsilon_c = -(nu/ (1-nu) )* ((epsilon_max) + (epsilon_min));
%
% Calculate maximum shear strain
if (epsilon_max >= epsilon_min && epsilon_min >= epsilon_c)
Y_max_out = (epsilon_max) - (epsilon_c);
elseif (epsilon_max >= epsilon_c && epsilon_c >= epsilon_min)
Y_max_out = (epsilon_max) - (epsilon_min);
elseif (epsilon_c >= epsilon_max && epsilon_max >= epsilon_min)
Y_max_out = (epsilon_c) - (epsilon_min);
end
%
%Print the output values
fprintf([ '\nAngle between xy axes and principal axes ',...
'(+ Counter-clockwise) :' ])
fprintf([ * \n-------------------------------------------',...
'-------------------------\n' ])
fprintf( 'Principal plane is at %f Degrees \n' , theta_p)
fprintf (['epsilon_a = %d micro meter\nepsilon_b = %d micro ',...
'meter\n' ], epsilon_max, epsilon_min)
fprintf( 'epsilon_c = %5.2f micro meter \n', epsilon_c)
fprintf([ '\n--------------------------------------------- ,...
'---------------------\n' ])
fprintf(['Y_max(in-plane) = %5.2f micro radians',...
'\nY_max(out-of-plane) = %5.2f micro radians \n' ], Y_max_in, Y_max_out)
end