I am writing a code using the 4th order runge kutta method, for heat transfer through an adiabatic fin, i am having some problems getting the code to work, any advice?

1 view (last 30 days)
%%4th order runge kutta-uniform cross section fins
%circular pin fin- pure aluminium
%assumptions
%1D steady state heat transfer
%dimensions
L=0.05;
D=0.005;
%parameters
h=50;
k=237;
Tb=60;
Ta=15;
P=pi*D;
Ac=pi*D^2/4;
m=sqrt(h*P/k*Ac);
%Boundary conditions
%BC1 Theta(0)=Tb-Ta
%BC2 dtheta/dx at x=L =0
%inputs
H=0.0004; %step size
Lmax=0.05; %total length
N=Lmax/H; %Number of steps
%Initial conditions
L(1)=0;
T(1)=60;
z(1)=0;
m=1;
z(100)=0;
x(1)=0;
while m>0.00001;
for i=1:N
%equations for k values
k1=z(i);
k2=z(i)+(H*L1/2);
k3=z(i)+(H*L2/2);
k4=z(i)+(H*L3);
%equation for T(i+1)
T(i+1)=T(i)+(H/6)*(k1+(2*k2)+(2*k3)+k4);
%equations for L values
L1=((h*P/k*Ac).*(T(i)));
L2=((h*P/k*Ac).*(T(i)+(H*k1/2)));
L3=((h*P/k*Ac).*(T(i)+(H*k2/2)));
L4=((h*P/k*Ac).*(T(i)+(H*k3)));
%equation for z(i+1)
z(i+1)=z(i)+(H/6)*(L1+(2*L2)+(2*L3)+L4);
%equation for x(i+1)
x(i+1)=x(i)+H;
end
z(1)=z(1)-z(i+1);
m=abs(z(i+1)-z100);
end
  4 Comments
Torsten
Torsten on 6 Apr 2022
Edited: Torsten on 6 Apr 2022
You solve the boundary value problem
d^2T/dx^2 = 0
T(x=0) = 60
dT/dx(x=0.05) = 0
don't you ?
If this is the case, the solution should be clear:
T(x) = a*x + b
where the constants a and b follow from the boundary conditions (in your case T=60 for all x).

Sign in to comment.

Answers (0)

Categories

Find more on Thermal Analysis in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!