How to plot a circle with polar coordinates in which the colour of the circle changes by data?

1 view (last 30 days)
Hi! I want to make something like this, which I found in an article.
In my work I model the drying of granulates, and the moisture content of the particles are changing in the function of time and the radius of the particle. I want to take some timesnaps and plot the moisture content of the particle which is changing with the radius, and next to them the colour bar explains what moisture content belongs to the colour.
So far modelled what I want in a 2D figure, in which I took five different timesnaps, but don't know how to plot like in the upper image.
I attached my code so you have my data. Thank you in advance!
x = linspace(0,0.0008,10);
t = linspace(0,200,50);
m = 0;
eqn = @(x,t,u,dudx) fluidPDE(x,t,u,dudx);
ic = @(x) fluidIC(x);
bc = @(xl,ul,xr,ur,t) fluidBC(xl,ul,xr,ur,t)
sol = pdepe(m,eqn,ic,bc,x,t);
u = sol(:,:,1);
surf(x,t,u)
title('Moisture content')
xlabel('Radius [m]')
ylabel('Time [s]')
zlabel('Moisture content [-]')
figure
hold on
plot(x,u(5,:),'Linewidth',2)
plot(x,u(20,:),'Linewidth',2)
plot(x,u(30,:),'Linewidth',2)
plot(x,u(40,:),'Linewidth',2)
plot(x,u(end,:),'Linewidth',2)
legend('t=5 s','t=20 s','t=30 s','t=40 s','t=50 s')
xlabel('Radius [m]')
ylabel('Moisture content [-]')
title('Moisture content')
function [c,f,s] = fluidPDE(x,t,u,dudx) % Equation to solve
D=3e-9
c = 1/D;
f = dudx;
s = 2/x;
end
% ----------------------------------------------------
function u0 = fluidIC(x) % Initial condition
X0=0.2
u0 = X0;
end
% ----------------------------------------------------
function [pl,ql,pr,qr] = fluidBC(xl,ul,xr,ur,t) % Boundary conditions
D=3e-9
rop=2500
k=1.8e-4
uf=0.05
pl = 0;
ql = 1;
pr = k*(ur-uf);
qr = D;
end

Accepted Answer

DGM
DGM on 5 Nov 2021
Edited: DGM on 5 Nov 2021
Something like this may suffice. It probably needs quite a bit of tweaking (labels, titles, geometry adjustment) still, but it's a start.
maxradius = 0.0008;
x = linspace(0,maxradius,10);
t = linspace(0,200,50);
m = 0;
eqn = @(x,t,u,dudx) fluidPDE(x,t,u,dudx);
ic = @(x) fluidIC(x);
bc = @(xl,ul,xr,ur,t) fluidBC(xl,ul,xr,ur,t);
sol = pdepe(m,eqn,ic,bc,x,t);
u = sol(:,:,1);
figure(1)
surf(x,t,u)
title('Moisture content')
xlabel('Radius [m]')
ylabel('Time [s]')
zlabel('Moisture content [-]')
figure(2)
hold on
plot(x,u(5,:),'Linewidth',2)
plot(x,u(20,:),'Linewidth',2)
plot(x,u(30,:),'Linewidth',2)
plot(x,u(40,:),'Linewidth',2)
plot(x,u(end,:),'Linewidth',2)
legend('t=5 s','t=20 s','t=30 s','t=40 s','t=50 s')
xlabel('Radius [m]')
ylabel('Moisture content [-]')
title('Moisture content')
% this is the new part
figure(3)
nth = 100;
th = linspace(0,2*pi,nth).';
xx = x.*cos(th);
yy = x.*sin(th);
timeindices = [5 20 30 40];
datarange = [min(u(timeindices,:),[],'all') max(u(timeindices,:),[],'all')];
px = ceil(sqrt(numel(timeindices)));
py = numel(timeindices)/px;
pidx = reshape(1:py*(px+1),px+1,py).';
for k = 1:numel(timeindices)
subplot(py,px+1,pidx(k))
pcolor(xx,yy,repmat(u(timeindices(k),:),[nth 1]));
shading flat
caxis(datarange)
colormap(jet)
axis equal off
ht = text(-1.2*maxradius,-1.2*maxradius, ...
sprintf('time = %d sec',timeindices(k)));
end
ha = subplot(py,px+1,pidx(k+(1:2)));
hp = get(ha,'Position');
caxis(datarange)
colorbar('Position', hp.*[1 1 0.5 0.75] + [hp(3)*0.25 hp(4)*0.125 0 0])
axis off
function [c,f,s] = fluidPDE(x,t,u,dudx) % Equation to solve
D=3e-9;
c = 1/D;
f = dudx;
s = 2/x;
end
% ----------------------------------------------------
function u0 = fluidIC(x) % Initial condition
X0=0.2;
u0 = X0;
end
% ----------------------------------------------------
function [pl,ql,pr,qr] = fluidBC(xl,ul,xr,ur,t) % Boundary conditions
D=3e-9;
rop=2500;
k=1.8e-4;
uf=0.05;
pl = 0;
ql = 1;
pr = k*(ur-uf);
qr = D;
end
  3 Comments

Sign in to comment.

More Answers (0)

Categories

Find more on Dates and Time in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!