Optimizing number of fins in a heat sink
12 views (last 30 days)
Show older comments
I like to make a program to optimise the heat sink design, like analysing the thermal distribution of the heat sink using different forced convection boundary condition. Please find the .STL file in the below link.
%% Model Setup for Heat Sink
clc
close all
clear all
thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'heatsinkv2.STL');
pdegplot(thermalmodel,'FaceLabel','on','FaceAlpha',0.5);
axis equal
%% mesh
generateMesh(thermalmodel);
figure;
pdeplot3D(thermalmodel);
%% Boundary Condition, Aluminium Alloy Properties and Initial Conditions
TCval = @(location,state)139.3 + 0.204*(state.u-273.15); %sets thermal conductivity (W/m/°C) as a function of temperature only approximate equation based on linear trend for table data from ansys engineering alumnium alloy data
MDval = 2770; %Mass density kg/m^3
SHval = 875; %specific heat (J/kg/°C)
ATval = 25+273.15; %ambient temperature
CCval = 30; %convective film coefficient W/m^2
REval = 0.77; %radiation emissivity
thermalmodel.StefanBoltzmannConstant = 5.670373E-8;
faces = [1,3:30];
thermalProperties(thermalmodel,'ThermalConductivity',TCval,'MassDensity',MDval,'SpecificHeat',SHval);
thermalBC(thermalmodel,'Face',faces,'ConvectionCoefficient',@(region,state)CCval,'Emissivity',@(region,state)REval,'AmbientTemperature',ATval);
thermalBC(thermalmodel,'Face',2,'ConvectionCoefficient',5,'Emissivity',0.1,'AmbientTemperature',ATval);
thermalIC(thermalmodel,60+273.15); %sets initial temperature °C problem with this as temp doesnt go down very fast?
%% solve
tlist= [0:10]; %time from 0 to 10seconds
thermalTransientResults = solve(thermalmodel,tlist);
pdeplot3D(thermalmodel,'ColorMapData',thermalTransientResults.Temperature(:,10)-273.15)
0 Comments
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!