

Industrial Solutions for Energy Resources in **AATLAB**[®] **SIMULINK®**

(v. 4Q24)

Artificial Intelligence **Big Data** Analysis

Deep Learning

Machine

Learning

Reinforced Learning

Predictive Internet Analytics of Things

Process Model-Based Optimization

Design

Process Automation **New Process** Integration

© 2024 The MathWorks. Inc.

40 years in business and profitable every year

Our Customers by Industry

Aerospace and Defense

Automotive

Biological Sciences

Biotech and Pharmaceutical

Communications

Electronics

Energy

Neuroscience

Financial Services

Industrial Machinery

Medical Devices

Process Industries

Railway Systems

Semiconductors

Software and Internet

How to Accelerate Scientific & Engineering Processes with

 Streamlined Asset Production Management

 (Geo)Sciences & Engineering

 Big Data & Image Analysis

 Simulation & Control

Optimization & Automation

Interconnectivity & Deployment

Industry-compliant, adaptive, cost-effective Scientific & Engineering solutions

- > User-Friendly Interface for Non-Programmers with intuitive IDE for applied engineering & scientific tasks
- Streamlined Complex Computing for predictive
 real-time analysis of large and frequent datasets
- Graphical Model-Based Design to simulate, test, validate, and control complex physical systems
- Built-in Domain-Specific Toolboxes for control systems, signal processing, AI, and automation
- Direct Software & Hardware links to accelerate workflows and data analysis on IT/OT infrastructure

MathWorks[®]

How to Accelerate Big Data & Image Analysis with

Streamlined Asset Production Management		
Geo)Sciences & Engineering		
Big Data & Image Analysis		

Simulation & Control

Optimization & Automation

 \geq

Interconnectivity & Deployment

Industry-compliant, adaptive, cost-effective Scientific & Engineering solutions

Built-in big data scalability using tall arrays and integration with Hadoop and Spark datastores

MATLAB

- Advanced toolboxes to rapidly process, analyze, and visualize large-scale data, signals, and images
- Automated code generation to integrate software and hardware systems for enhanced performance
- Just-in-time (JIT) compilation with optimized numerical analysis and matrix-based performance
- Built-in parallel computing using on-prem or cloud-based CPU or GPU cluster infrastructures

How to Streamline Real-Time Data Analysis with A

Streamlined Asset Production Management (Geo)Sciences & Engineering

Big Data & Image Analysis

Simulation & Control

Optimization & Automation

Interconnectivity & Deployment

Industry-compliant, adaptive, cost-effective Scientific & Engineering solutions

- Easy-to-use and scalable platform with highlevel language, intuitive syntax, and low coding
- Engineering workflows to optimize & accelerate signal processing, control systems, and AI tasks
- Specialized toolboxes for real-time analysis, testing & validation of mission-critical operations
- Automatic C/C++ code generation to deploy on embedded systems and real-time platforms
- Supports OPC, MODBUS & CAN protocols for real-time analysis using OT and IIoT devices

7

Upstream Geosciences | Big Data Science Workflows

Workflow	Imaging	Conditioning	Classifying	Inverting	Predicting
Inputs	Prestack seismic gathers Seismic velocity model	Prestack migrated gathers (after NMO or NHMO)	Seismic migrated stacks Seismic inversion volumes	Prestack conditioned AVO-compliant gathers	Seismic inversion volumes Subsurface property vols.
Key features	Prestack imaging (RTM, LSM, FWI) Parallel computing (CPU, GPU)	Reduced order modeling (AVO, AVA, AVAz) Gather flattening Spectral balancing	Structural / Stratigraphic classification Spectral decomposition PINNs (CNN, RNN)	Rock physics modeling Petroelastic inversion Geostatistical modeling Bayesian classification	Sweet spot classification Petroelastic/Geomechanical Petroelastic classification PINNs (CNN, RNN)
Toolboxes	S3I (MCT) Mapping Parallel Computing	CMSL (MCT) Signal Processing Parallel Computing	Deep Learning Wavelet Parallel Computing	SeReM (MCT) MRPI (MCT) Parallel Computing	Deep Learning Wavelet Parallel Computing
Outputs	Prestack migrated gathers Prestack migrated stacks	Prestack conditioned AVO-compliant gathers	Structural class. volume Stratigraphic class. volume	Seismic inversion volumes Subsurface property vols.	Sweet spot geobodies Property class. volumes
Examples	Velocity Model	PP 2 opprite Synthetic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Actual Labels		Predicted CO ₂ saturation 2400 2600 2600 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 5.685 6.695 6.7 5.2 5.2 5.3 5.3 5.4 10^{5}
	Velocity Model 20 400 400 400 400 400 400 400	P ROM Burthalts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Of and probability

Upstream Engineering | Production Optimization Workflows

Workflow	Modeling	Simulating	Automating	Monitoring	Optimizing
Inputs	Reservoir property grids Production history data	Reduced order models Dynamic model decks	Production history data Reservoir model updates	Borehole and surface pipeline sensor data	Production history data IPR & VLP data
Key features	Reduced order modeling CRM modeling Dual-porosity modeling	Geomechanical simulation Compositional fluids Sensitivity analysis	Automatic history matching (AHM) Machine learning model	Subsurface-to-surface nodal analysis Steady-state analysis	Multi-pad, multi-well production optimization Steady-state analysis
Toolboxes	MRST (MCT) Deep Learning Parallel Computing	MRST (MCT) Optimization Parallel Computing	MRST (MCT) Machine Learning Parallel Computing	MRST (MCT) Simscape Parallel Computing	Optimization Computational Finance Parallel Computing
Outputs	History matching outputs Reservoir model updates	History matching outputs Reservoir model updates	History matching outputs Reservoir model updates	Borehole and surface dynamic properties	Production history outputs
Examples	<figure></figure>		the second secon		Sottomhole (P_2) (P_1) P_1 q_0 q_w q_g q_g
	8000 7000 (iii) B000 1 2 3 4 5 6 7 8 9 10 Time (days)	0 500 1000 1500 2000 2500 3000 3500 4000 Time [days]	Well R	Surface 0 0 0 0 0 0 0 0 0 0 0 0 0	Her Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form Present rest of a form

MathWorks solutions for Midstream Asset Management

Workflow	Key Solutions	Main Objectives	Major Applications	Examples
System Design & Simulation	Simulink & Simscape	 Design and model digital twins of complex multi-domain LNG infrastructure Simulate and optimize LNG facilities design before construction Visualize and analyze dynamic interactions between LNG subsystems 	 Fluid dynamics, thermodynamics, control systems Predictive, real-time operational optimization Gas processing and compression, LNG cooling 	 <u>Optimize and Automate Energy</u> <u>Assets with Digital Twins in MATLAB</u> <u>and Simulink</u> <u>Optimize Oil & Gas Production Assets</u> <u>with Simscape - MATLAB & Simulink</u>
Control System Development	MPC, Control Systems & PLC Coder	 Design advanced control systems essential for LNG processes Generate structured text to deploy on PLCs and embedded controllers 	 Gas liquefaction, storage, and transportation Safe and efficient temperature & pressure control LNG facility process automation 	 <u>Digital Twins for Industrial IoT -</u> <u>MATLAB & Simulink</u> <u>Developing Energy Systems from</u> <u>Tank to Fuel Cell - MATLAB &</u> <u>Simulink</u>
Predictive Maintenance & Reliability Analysis	Pred. Maintenance, Machine & Deep Learning	 Design predictive algorithms using sensor data from LNG facility equipment Predict operational performance using data- driven models and data analytics 	 Proactive maintenance to avoid unplanned downtime Optimize maintenance schedules (compressors, pipelines, tanks) Predict equipment degradation 	 Introduction to Predictive Maintenance with MATLAB Digital Twins for Predictive Maintenance of Oil & Gas Processes - MATLAB & Simulink
Process Optimization & Safety Assessment	Optimization & Planning	 Optimize facility layouts, pipeline routing and LNG processing parameters Quantify risks in complex LNG operations Model safety-critical LNG systems 	 Enhanced operational efficiency, safety, and cost effectiveness Assess potential failures in pipelines, tanks, or processes 	Optimizing Operational Processes with Reinforcement Learning in MATLAB
Scalability & Enterprise Systems Integration	App Deployment Servers & Industrial Communications	 Process historical and real-time data from PI systems to fine-tune operations Integrate SCADA, ERP, and PI historians to analyze and optimize operational data Deploy enterprise-wide applications 	 Advanced process analytics to improve energy efficiency Run complex analysis, visualize data trends, and make data- driven decisions in real time 	 MATLAB Production Server – MATLAB MATLAB Web App Server – MATLAB Industrial Communication Toolbox - MATLAB

MathWorks solutions for Downstream Process Optimization

- > Flexible and scalable simulation of large-scale plant designs and unit-specific optimizations
- > Advanced predictive analytics using data science and AI to optimize process operations
- Industry-compliant tools to ensure safe and sustainable production processes

Workflow	Key Solutions	Main Objectives	Major Applications	Examples
Process Modeling & Simulation	MATLAB, Simulink & Simscape	 Build dynamic models of chemical reactors, distillation columns, and heat exchangers Simulate and optimize nonlinear and time-dependent petrochemical processes Visualize and analyze dynamic interactions between petrochemical subsystems 	 Optimize process design and operations Analyze energy and mass balances Troubleshoot processing and production bottlenecks 	 <u>Chemicals and Materials - MATLAB &</u> <u>Simulink</u> <u>Selection of Optimum Chemical</u> <u>Reactor Design</u> <u>Controller for Distillation Column</u> <u>Heat Exchangers</u>
Process Control & Automation	MPC, Control Systems & Simulink Real-Time	 Design and tune advanced controllers (MPC, PID) for distillation towers, compressors, and polymerization reactors Develop and integrate real-time models for predictive analytics using control systems Implement closed-loop control systems 	 Enhance process safety and reliability Automate fault-tolerant processes and operations Integrate DCS and SCADA systems and PI historians 	 <u>Nonlinear Model Predictive Control of Exothermic Chemical Reactor</u> <u>Adaptive MPC Control of Nonlinear Chemical Reactor</u> <u>Use OPC UA Data to Test Binary Distillation Column Plant Model</u>
Process Safety & Reliability	 Develop risk assessment models (HAZOP) supported by software-in-the-loop (SIL) tests Simulate critical process scenarios Create logical alarm management frameworks Monitor equipment health in real time using machine learning 	 Simulate and mitigate hazardous scenarios for critical process units Analyze historical alarm data to identify nuisances Predict and prevent equipment failure and anomalies 	 <u>Digital Twins for Predictive</u> <u>Maintenance of Oil & Gas Processes</u> - <u>MATLAB & Simulink</u> <u>Optimizing Operational Processes</u> with Reinforcement Learning in <u>MATLAB</u> 	
Process Design & Optimization	Optimization & Planning	 Optimize feedstock blending and reaction conditions Improve throughput and reduce waste using data-driven modeling Evaluate economic and environmental performance of alternative processes 	 Enhance operational efficiency, safety, and cost effectiveness Assess potential failures in petrochemical facilities 	 Multivariate Analysis for Process Monitoring Fault Detection and Diagnosis in Petrochemical Processes, Part 1 HYSYS-MATLAB LINK - File Exchange - MATLAB Central

Subsurface Geosciences & Engineering

MathWorks[®]

• Customize & optimize subsurface processes with integrated solutions developed in MATLAB & Simulink to maximize asset value •

11

Upstream Big Data & Image Analysis

MathWorks[®]

• Accelerate processing and analysis of large-scale and real-time data and images to make prompt and informed asset decisions •

Key Applications

Predictive Maintenance & Anomaly Detection

So	lution	Key Features
	Machine & Deep Learning	 Classification, regression & clustering algorithms Deep neural networks (NN) & transfer learning Reduced order modeling & physics-informed NNs
	Signal & Wavelet Processing	 Signal and wavelet analysis (time, space, freq.) Time series analysis and wavelet decomposition Multi-scale analysis for physics-informed NNs
	High Performance Computing	 Multi-CPU, multi-GPU cluster & cloud computing GPU CUDA code generation & cloud deployment Run real-time analytics for process automation

Midstream & Downstream Data & Image Analysis

MathWorks®

• Accelerate processing and analysis of large-scale and real-time data and images to make prompt and informed asset decisions •

Key Applications Chemical Production Data Analytics RUNTIME PROFIT (Validation H2 ()hat happe Catalytic Reactor Beginning of LOT #4 998 1000 1002 1004 1006 996 **Plant Production Monitoring and Optimization** SCADA Intranet Developmen **Predictive Maintenance & Anomaly Detection**

Solution	Key Features
Machine & Deep Learning	 Classification, regression & clustering algorithms Deep neural networks (NN) & transfer learning Reduced order modeling & physics-informed NNs
Signal & Wavelet Processing	 Signal and wavelet analysis (time, space, freq.) Time series analysis and wavelet decomposition Multi-scale analysis for physics-informed NNs
High Performance Computing	 Multi-CPU, multi-GPU cluster & cloud computing GPU CUDA code generation & cloud deployment Run real-time analytics for process automation

Process Simulation & Control

MathWorks[®]

Model, simulate, and monitor production processes using Simscape and Control Systems for cost-effective asset performance •

Upstream Process Optimization & Automation

MATLAB° SIMULINK

MathWorks[®]

• Perform techno-economic assessments and generate embedded code to optimize and automate reliable production processes •

15

Mid/Downstream Process Optimization & Automation

MATLAB[®] SIMULINK[®]

MathWorks[®]

• Perform techno-economic assessments and generate embedded code to optimize and automate reliable production processes •

MathWorks[®]

• Create, interconnect, and deploy software and hardware applications across asset's IT, OT, and IIoT infrastructure •

Solution	Key Features
Industrial Comms	 Exchange data with OPC UA, MQTT protocols Interconnect IIoT devices (PLC, DCS, RTU) Support distributed control systems (SCADA)
MATLAB Compiler SDK	 Build standalone and web apps from MATLAB Build Python, .NET, C++, and Docker packages Deploy in OT & edge devices for IIoT surveillance
MATLAB Web App Server	 Use MATLAB App Designer to create Web GUIs Deploy and host MATLAB & Simulink web apps Control access using OpenID Connect & LDAP

MathWorks solutions for Digital Twin Modeling of Oilfield Processes

	Product	Objective	Functions	Applications	Examples
Process Simulation	Simulink	Model dynamic systems with block diagrams to represent physical processes and control systems	 Model thermal flow systems Model oilfield infrastructure Model control systems 	Oilfield assets: • Borehole sensors • Pipelines • Oilfield aguipment	Optimize and Automate Energy Assets with Digital Twins in MATLAB and Simulink
	Den Constant Simscape	Model multi-physics processes	 Model gas and fluid flow dynamics Model condensation / evaporation Model liquefaction / regasification 	 Processing facilities Storage facilities 	Optimize Oil & Gas Production Assets with Simscape - MATLAB & Simulink
	Sim. Real-Time	Test and deployment of models in real-time environments	 Hardware-in-the-loop (HIL) testing Testing digital twins in real-time Process safety and reliability 		Electro-Mechanical System Optimization using Simulation - MATLAB & Simulink
Process Control	Pred. Maintenance	Analyze equipment data from sensors, predict performance, and forecast maintenance	 Detect process anomalies Predict equipment failure Optimize maintenance schedule 	 Pressure control Temperature control Flow rate regulation 	Digital Twins for Predictive Maintenance of Oil & Gas Processes - MATLAB & Simulink
	Control Systems	Design, analyze, and implement process controls in digital twins	 Model Predictive Controls (MPC) Advanced Control Systems (APC) Distributed Control Systems (DCS) 	 Healthy conditions 	Digital Twins for Industrial IoT - MATLAB & Simulink
	PLC PLC Coder	Deploy control algorithms onto field devices including PLCs and embedded controllers	 Automatic PLC code generation Automatic C/C++ code from Simulink model for hardware 	 Multi-brand PLCs Multi-brand RTUs Embedded controllers 	Developing Hydrogen Systems from Tank to Fuel Cell - MATLAB & Simulink
Data Analytics	MATLAB	Develop scripts, algorithms, and predictive models to perform real- time data analysis from sensors	Data preprocessing and analysisReal-time signal processingData postprocessing	 S&H Integration with: Big data stores PI historians Case and Sase S 	Digital Twins for New Energy Processes – MATLAB & Simulink
	Machine Learning	Develop predictive models using machine learning algorithms	 Process optimization, anomaly detection, and data analysis Real-time predictive analytics 	 RT dashboards 3rd-party applications Control systems 	Optimizing Operational Processes with Reinforcement Learning in MATLAB

What energy customers have achieved using MathWorks products

Customer	Objective	Outcome	MathWorks solutions
	Drilling Modeling, Simulation, and Control	Improved drilling performance and automation	MATLAB & Simulink
E ∕ xonMobil	Model drill string dynamics for operational surveillance, diagnosis, and automation	Continuously improve drilling automation processSave time selection and optimizing drilling systems	Simscape + StateflowControl Systems
1. Martine	Natural Fracture Prediction and Analysis	Efficient geomechanical modeling & simulation	MATLAB
	Perform key structural geomechanics analysis in a computational and cost-efficient manner	 Accelerated reservoir geomechanics workflow for elastic dislocation and fracture prediction analysis 	Math & OptimizationApp Deployment
	Reduced-Order Reservoir Simulation	Accelerated reservoir management decisions	MATLAB
Chevron	Simulate reservoir and surface conditions in a mature oilfield to optimize production recovery	Integrated LSTM-CRM reservoir modelsSupported real-time decision making	Reservoir Modeling & SimulationOptimization & App Deployment
	Microseismic Monitoring of Carbon Storage	Accelerated CCS surveillance decisions	MATLAB
Shell	Design measuring-monitoring-verifying (MMV) plan for CO2 storage using microseismic data	 Developed a risk-based MMV app for microseismic analytics to assess containment at CCS complex 	Image & Signal ProcessingData Analytics +App Deployment
	Oil Production Modeling and Control	Integrated process control theory and practice	MATLAB & Simulink
BR PETROBRAS	Model oil production processes, dynamic responses, and advanced control structures	 Production methods for data processing, modeling, and simulation of oilfield control systems 	Math & OptimizationControl Systems
	Borehole Image Processing and Analysis	Enhanced DAS survey modeling & VSP imaging	MATLAB
HALLIBURTON	Model and process distributed acoustic sensor (DAS) datasets to enhance borehole images	 Integrated seismic models to design DAS surveys Design migration algorithms for VSP images 	Image & Signal ProcessingMath & Optimization
	Adaptive Multi-Domain Controller Design	Improved wireline logging operations	MATLAB + Simulink
SID	Model, simulate, and deploy multi-domain controller systems for operational optimization	 Customized control system model, generated embedded code, and test automation in DevOps 	Simscape + StateflowControl Systems + Simulink Test

MathWorks

Accelerating the pace of engineering and science

