Initial conditions on ODE45 ?

132 views (last 30 days)
Robin
Robin on 30 Jul 2011
Im trying to solve this IVP: e^y +(t*e^y - sin(y))*(dy/dt)=0 with the initial condition y(2)=1.5.
I was just not sure how to do it with the initial condition with Y(2)=1.5, iknow how to do it if it were y(0)=1.5:
f= @(t,y) (exp(y)+(t.*exp(y)-sin(y))); % This is the function.
[t,y]=ode45(f, [0.5,4], 1.5); % trange is from 0.5 to 4
plot(t,y)
can someone please help me out?

Accepted Answer

Jan
Jan on 30 Jul 2011
This uses the initial value y(0.5)=1.5 ( not y(0)=1.5):
[t, y] = ode45(f, [0.5, 4], 1.5);
So for y(2)=1.5:
[t, y] = ode45(f, [2, 4], 1.5);
Note: The initial value problem starts at the inital point.
[EDITED]: The call to ODE45 is equivalent, if the problem is formulated in backward direction - an "final value problem": tspan is still [ti, tf], but now ti > tf.
  9 Comments
Walter Roberson
Walter Roberson on 26 Jul 2017
Liu Langtian comments to Jan Simon
right
Pasindu Ranasinghe
Pasindu Ranasinghe on 22 Jul 2021
Example Code
Use ode45() to find the approximate values of the solution at t in the range of 1 to 3
function ydot = eqns(t,y)
ydot=(t-exp(-t))/(y+exp(y));
end
###################################
%%Code
[t1,y1]=ode45(@eqns,[1.5 1], 0.5);
hold on;
[t2,y2]=ode45(@eqns,[1.5 3], 0.5);
hold off
t=[t1;t2];
y=[y1;y2];
plot(t,y,'-o')

Sign in to comment.

More Answers (1)

Subha Fernando
Subha Fernando on 26 Oct 2011
let say function is dy/dt = y (t-y).
If initial condition is given at y(1) = 0.5 not at y(0) then we define the RHS as
function output = funcRHS(t, y) output = y *(t-y); end
%then u can call
hold on ode45('funcRHS', [1, -1], 0.5) ode45('funcRHS', [1,5], 0.5)
%Here you can see and read the initial value at y(0) also

Categories

Find more on Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!